Search results
Results from the WOW.Com Content Network
The Laplace transform can also be used to solve differential equations and is used extensively in mechanical engineering and electrical engineering. The Laplace transform reduces a linear differential equation to an algebraic equation, which can then be solved by the formal rules of algebra.
In mathematics, the Laplace transform is a powerful integral transform used to switch a function from the time domain to the s-domain. The Laplace transform can be used in some cases to solve linear differential equations with given initial conditions. First consider the following property of the Laplace transform:
In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties.This is often written as = or =, where = = is the Laplace operator, [note 1] is the divergence operator (also symbolized "div"), is the gradient operator (also symbolized "grad"), and (,,) is a twice-differentiable real-valued function.
This is a list of transforms in mathematics. Integral transforms Abel transform ... Laplace transform. ... The World of Mathematical Equations.
The term "transfer function" is also used in the frequency domain analysis of systems using transform methods, such as the Laplace transform; it is the amplitude of the output as a function of the frequency of the input signal.
The unilateral Laplace transform takes as input a function whose time domain is the non-negative reals, which is why all of the time domain functions in the table below are multiples of the Heaviside step function, u(t). The entries of the table that involve a time delay τ are required to be causal (meaning that τ > 0).
In pure mathematics the argument t can be any variable, and Laplace transforms are used to study how differential operators transform the function. In science and engineering applications, the argument t often represents time (in seconds), and the function f ( t ) often represents a signal or waveform that varies with time.
To counteract this problem, classical control theory uses the Laplace transform to change an Ordinary Differential Equation (ODE) in the time domain into a regular algebraic polynomial in the frequency domain. Once a given system has been converted into the frequency domain it can be manipulated with greater ease.