enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Laplace transform - Wikipedia

    en.wikipedia.org/wiki/Laplace_transform

    The Laplace transform can also be used to solve differential equations and is used extensively in mechanical engineering and electrical engineering. The Laplace transform reduces a linear differential equation to an algebraic equation, which can then be solved by the formal rules of algebra.

  3. Laplace transform applied to differential equations - Wikipedia

    en.wikipedia.org/wiki/Laplace_transform_applied...

    In mathematics, the Laplace transform is a powerful integral transform used to switch a function from the time domain to the s-domain. The Laplace transform can be used in some cases to solve linear differential equations with given initial conditions. First consider the following property of the Laplace transform:

  4. Laplace's equation - Wikipedia

    en.wikipedia.org/wiki/Laplace's_equation

    In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties.This is often written as = or =, where = = is the Laplace operator, [note 1] is the divergence operator (also symbolized "div"), is the gradient operator (also symbolized "grad"), and (,,) is a twice-differentiable real-valued function.

  5. List of transforms - Wikipedia

    en.wikipedia.org/wiki/List_of_transforms

    This is a list of transforms in mathematics. Integral transforms Abel transform ... Laplace transform. ... The World of Mathematical Equations.

  6. Transfer function - Wikipedia

    en.wikipedia.org/wiki/Transfer_function

    The term "transfer function" is also used in the frequency domain analysis of systems using transform methods, such as the Laplace transform; it is the amplitude of the output as a function of the frequency of the input signal.

  7. List of Laplace transforms - Wikipedia

    en.wikipedia.org/wiki/List_of_Laplace_transforms

    The unilateral Laplace transform takes as input a function whose time domain is the non-negative reals, which is why all of the time domain functions in the table below are multiples of the Heaviside step function, u(t). The entries of the table that involve a time delay τ are required to be causal (meaning that τ > 0).

  8. Two-sided Laplace transform - Wikipedia

    en.wikipedia.org/wiki/Two-sided_Laplace_transform

    In pure mathematics the argument t can be any variable, and Laplace transforms are used to study how differential operators transform the function. In science and engineering applications, the argument t often represents time (in seconds), and the function f ( t ) often represents a signal or waveform that varies with time.

  9. Classical control theory - Wikipedia

    en.wikipedia.org/wiki/Classical_control_theory

    To counteract this problem, classical control theory uses the Laplace transform to change an Ordinary Differential Equation (ODE) in the time domain into a regular algebraic polynomial in the frequency domain. Once a given system has been converted into the frequency domain it can be manipulated with greater ease.