Search results
Results from the WOW.Com Content Network
A series or, redundantly, an infinite series, is an infinite sum.It is often represented as [8] [15] [16] + + + + + +, where the terms are the members of a sequence of numbers, functions, or anything else that can be added.
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
A Harshad number in base 10 is an integer that is divisible by the sum of its digits (when written in base 10). A005349: Factorions: 1, 2, 145, 40585, ... A natural number that equals the sum of the factorials of its decimal digits. A014080: Circular primes: 2, 3, 5, 7, 11, 13, 17, 37, 79, 113, ...
The Fibonacci number series is used for optional lossy compression in the IFF 8SVX audio file format used on Amiga computers. The number series compands the original audio wave similar to logarithmic methods such as μ-law. [76] [77] Some Agile teams use a modified series called the "Modified Fibonacci Series" in planning poker, as an ...
Number of 3-dimensional polyominoes (or polycubes) with n cells and symmetry group of order exactly 24. Jan 1, 2002: A075000: Smallest number such that n · a(n) is a concatenation of n consecutive integers ... Aug 31, 2002: A078470: Continued fraction for ζ(3/2) Jan 1, 2003: A080000: Number of permutations satisfying −k ≤ p(i) − i ≤ r ...
The partial sums of a series are the expressions resulting from replacing the infinity symbol with a finite number, i.e. the Nth partial sum of the series = is the number S N = ∑ n = 1 N a n = a 1 + a 2 + ⋯ + a N . {\displaystyle S_{N}=\sum _{n=1}^{N}a_{n}=a_{1}+a_{2}+\cdots +a_{N}.}
The look-and-say sequence is also popularly known as the Morris Number Sequence, after cryptographer Robert Morris, and the puzzle "What is the next number in the sequence 1, 11, 21, 1211, 111221?" is sometimes referred to as the Cuckoo's Egg , from a description of Morris in Clifford Stoll 's book The Cuckoo's Egg .
There are known formulae to evaluate the prime-counting function (the number of primes smaller than a given value) faster than computing the primes. This has been used to compute that there are 1,925,320,391,606,803,968,923 primes (roughly 2 × 10 21 ) smaller than 10 23 .