Search results
Results from the WOW.Com Content Network
An intermolecular force (IMF; also secondary force) is the force that mediates interaction between molecules, including the electromagnetic forces of attraction or repulsion which act between atoms and other types of neighbouring particles, e.g. atoms or ions.
Van der Waals forces include attraction and repulsions between atoms, molecules, as well as other intermolecular forces.They differ from covalent and ionic bonding in that they are caused by correlations in the fluctuating polarizations of nearby particles (a consequence of quantum dynamics [6]).
A Van der Waals molecule is a weakly bound complex of atoms or molecules held together by intermolecular attractions such as Van der Waals forces or by hydrogen bonds. [1] The name originated in the beginning of the 1970s when stable molecular clusters were regularly observed in molecular beam microwave spectroscopy.
London dispersion forces (LDF, also known as dispersion forces, London forces, instantaneous dipole–induced dipole forces, fluctuating induced dipole bonds [1] or loosely as van der Waals forces) are a type of intermolecular force acting between atoms and molecules that are normally electrically symmetric; that is, the electrons are ...
Specifically, the dipole can cause electrostatic attraction or repulsion of the electrons from the non-polar molecule, depending on orientation of the incoming dipole. [13] Atoms with larger atomic radii are considered more "polarizable" and therefore experience greater attractions as a result of the Debye force. [citation needed]
Cohesion, along with adhesion (attraction between unlike molecules), helps explain phenomena such as meniscus, surface tension and capillary action. Mercury in a glass flask is a good example of the effects of the ratio between cohesive and adhesive forces.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Intermolecular forces such as Van der Waals forces, hydrogen bonds, and dipole–dipole interactions are typically not sufficiently strong to hold two apparently conformal rigid bodies together, since the forces drop off rapidly with distance, [2] and the actual area in contact between the two bodies is small due to surface roughness and minor imperfections.