enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Riemannian manifold - Wikipedia

    en.wikipedia.org/wiki/Riemannian_manifold

    Length of curves and the Riemannian distance function : [,) are defined in a way similar to the finite-dimensional case. The distance function d g {\displaystyle d_{g}} , called the geodesic distance , is always a pseudometric (a metric that does not separate points), but it may not be a metric. [ 46 ]

  3. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    The curve () describes the deflection of the beam in the direction at some position (recall that the beam is modeled as a one-dimensional object). q {\displaystyle q} is a distributed load, in other words a force per unit length (analogous to pressure being a force per area); it may be a function of x {\displaystyle x} , w {\displaystyle w ...

  4. Arc length - Wikipedia

    en.wikipedia.org/wiki/Arc_length

    Thus the length of a curve is a non-negative real number. Usually no curves are considered which are partly spacelike and partly timelike. In theory of relativity, arc length of timelike curves (world lines) is the proper time elapsed along the world line, and arc length of a spacelike curve the proper distance along the curve.

  5. Line element - Wikipedia

    en.wikipedia.org/wiki/Line_element

    The coordinate-independent definition of the square of the line element ds in an n-dimensional Riemannian or Pseudo Riemannian manifold (in physics usually a Lorentzian manifold) is the "square of the length" of an infinitesimal displacement [2] (in pseudo Riemannian manifolds possibly negative) whose square root should be used for computing curve length: = = (,) where g is the metric tensor ...

  6. Macaulay's method - Wikipedia

    en.wikipedia.org/wiki/Macaulay's_method

    Comparing equations (iii) & (vii) and (iv) & (viii) we notice that due to continuity at point B, = and =. The above observation implies that for the two regions considered, though the equation for bending moment and hence for the curvature are different, the constants of integration got during successive integration of the equation for ...

  7. Rayleigh–Ritz method - Wikipedia

    en.wikipedia.org/wiki/Rayleigh–Ritz_method

    For example, in the case of beam deflection problems it is wise to use a deformed shape that is analytically similar to the expected solution. A quartic may fit most of the easy problems of simply linked beams even if the order of the

  8. Theorem of three moments - Wikipedia

    en.wikipedia.org/wiki/Theorem_of_three_moments

    The change in slope of a deflection curve between two points of a beam is equal to the area of the M/EI diagram between those two points.(Figure 02) Figure 02-Mohr's First Theorem Mohr's second theorem

  9. Euler spiral - Wikipedia

    en.wikipedia.org/wiki/Euler_spiral

    A double-end Euler spiral. The curve continues to converge to the points marked, as t tends to positive or negative infinity. An Euler spiral is a curve whose curvature changes linearly with its curve length (the curvature of a circular curve is equal to the reciprocal of the radius). This curve is also referred to as a clothoid or Cornu spiral.