enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dihybrid cross - Wikipedia

    en.wikipedia.org/wiki/Dihybrid_cross

    The idea of a dihybrid cross came from Gregor Mendel when he observed pea plants that were either yellow or green and either round or wrinkled. Crossing of two heterozygous individuals will result in predictable ratios for both genotype and phenotype in the offspring. The expected phenotypic ratio of crossing heterozygous parents would be 9:3:3 ...

  3. Punnett square - Wikipedia

    en.wikipedia.org/wiki/Punnett_square

    The example below assesses another double-heterozygote cross using RrYy x RrYy. As stated above, the phenotypic ratio is expected to be 9:3:3:1 if crossing unlinked genes from two double-heterozygotes. The genotypic ratio was obtained in the diagram below, this diagram will have more branches than if only analyzing for phenotypic ratio.

  4. Test cross - Wikipedia

    en.wikipedia.org/wiki/Test_cross

    When conducting a dihybrid test cross, two dominant phenotypic characteristics are selected and crossed with parents displaying double recessive traits. The phenotypic characteristics of the F1 generation are then analyzed. In such a test cross, if the individual being tested is heterozygous, a phenotypic ratio of 1:1:1:1 is typically observed. [7]

  5. Mendelian inheritance - Wikipedia

    en.wikipedia.org/wiki/Mendelian_inheritance

    Mendel found support for this law in his dihybrid cross experiments. In his monohybrid crosses, an idealized 3:1 ratio between dominant and recessive phenotypes resulted. In dihybrid crosses, however, he found a 9:3:3:1 ratios. This shows that each of the two alleles is inherited independently from the other, with a 3:1 phenotypic ratio for each.

  6. Monohybrid cross - Wikipedia

    en.wikipedia.org/wiki/Monohybrid_cross

    All the haploid sperm and eggs produced by meiosis received one chromosome. All the zygotes received one R allele (from the round seed parent) and one r allele (from the wrinkled seed parent). Because the R allele is dominant to the r allele, the phenotype of all the seeds was round. The phenotypic ratio in this case of Monohybrid cross is 1.

  7. Dominance (genetics) - Wikipedia

    en.wikipedia.org/wiki/Dominance_(genetics)

    For example, in co-dominance, a red homozygous flower and a white homozygous flower will produce offspring that have red and white spots. When plants of the F1 generation are self-pollinated, the phenotypic and genotypic ratio of the F2 generation will be 1:2:1 (Red:Spotted:White). These ratios are the same as those for incomplete dominance.

  8. Should women take creatine? Dietitians explain benefits ... - AOL

    www.aol.com/news/women-creatine-dietitians...

    Few risk factors have been associated with creatine supplementation in women, with multiple studies showing a lower risk-to-benefit ratio when creatine is taken in appropriate doses. Documented ...

  9. Doubled haploidy - Wikipedia

    en.wikipedia.org/wiki/Doubled_haploidy

    Doubled haploid populations are ideal for genetic mapping. It is possible to produce a genetic map within two years of the initial cross regardless of the species. Map construction is relatively easy using a DH population derived from a hybrid of two homozygous parents as the expected segregation ratio is simple, i.e. 1:1. DH populations have ...