Search results
Results from the WOW.Com Content Network
The action of the Einstein-aether theory is generally taken to consist of the sum of the Einstein–Hilbert action with a Lagrange multiplier λ that ensures that the time vector is a unit vector and also with all of the covariant terms involving the time vector u but having at most two derivatives.
Given the difficulty of constructing explicit small families of solutions, much less presenting something like a "general" solution to the Einstein field equation, or even a "general" solution to the vacuum field equation, a very reasonable approach is to try to find qualitative properties which hold for all solutions, or at least for all ...
The solutions that are not exact are called non-exact solutions. Such solutions mainly arise due to the difficulty of solving the EFE in closed form and often take the form of approximations to ideal systems. Many non-exact solutions may be devoid of physical content, but serve as useful counterexamples to theoretical conjectures.
As historians such as John Stachel argue, Einstein's views on the "new aether" are not in conflict with his abandonment of the aether in 1905. As Einstein himself pointed out, no "substance" and no state of motion can be attributed to that new aether. [10] Einstein's use of the word "aether" found little support in the scientific community, and ...
The results of various experiments, including the Michelson–Morley experiment in 1887 (subsequently verified with more accurate and innovative experiments), led to the theory of special relativity, by showing that the aether did not exist. [20] Einstein's solution was to discard the notion of an aether and the absolute state of rest.
The study of exact solutions of Einstein's field equations is one of the activities of cosmology. It leads to the prediction of black holes and to different models of evolution of the universe. One can also discover new solutions of the Einstein field equations via the method of orthonormal frames as pioneered by Ellis and MacCallum. [22]
1903 – Olinto De Pretto presents his aether theory with some form of mass–energy equivalence. [15] It was described by a formula looking like Einstein’s E = mc 2, but with different meanings of the terms. 1903 – Frederick Thomas Trouton and H.R. Noble publish the results of their experiment with capacitors, showing no aether drift. [16 ...
Einstein's special theory is not the only theory that combines a form of light speed constancy with the relativity principle. A theory along the lines of that proposed by Heinrich Hertz (in 1890) [ 17 ] allows for light to be fully dragged by all objects, giving local c-constancy for all physical observers.