Ads
related to: how to decrease cpu processes
Search results
Results from the WOW.Com Content Network
When the CPU uses power management features to reduce energy use, other components, such as the motherboard and chipset, take up a larger proportion of the computer's energy. In applications where the computer is often heavily loaded, such as scientific computing, performance per watt (how much computing the CPU does per unit of energy) becomes ...
Timer coalescing is a computer system energy-saving technique that reduces central processing unit (CPU) power consumption by reducing the precision of software timers used for synchronization of process wake-ups, minimizing the number of times the CPU is forced to perform the relatively power-costly operation of entering and exiting idle states.
Underclocking, also known as downclocking, is modifying a computer or electronic circuit's timing settings to run at a lower clock rate than is specified. Underclocking is used to reduce a computer's power consumption, increase battery life, reduce heat emission, and it may also increase the system's stability, lifespan/reliability and compatibility.
Task Manager, previously known as Windows Task Manager, is a task manager, system monitor, and startup manager included with Microsoft Windows systems. It provides information about computer performance and running software, including names of running processes, CPU and GPU load, commit charge, I/O details, logged-in users, and Windows services.
Its CPU time "usage" is a measure of how much CPU time is not being used by other threads. In Windows 2000 and later the threads in the System Idle Process are also used to implement CPU power saving. The exact power saving scheme depends on the operating system version and on the hardware and firmware capabilities of the system in question ...
Dynamic frequency scaling (also known as CPU throttling) is a power management technique in computer architecture whereby the frequency of a microprocessor can be automatically adjusted "on the fly" depending on the actual needs, to conserve power and reduce the amount of heat generated by the chip.
In CPU fabrications, a die shrink always involves an advance to a lithographic node as defined by ITRS (see list). For GPU and SoC manufacturing, the die shrink often involves shrinking the die on a node not defined by the ITRS, for instance, the 150 nm, 110 nm, 80 nm, 55 nm, 40 nm and more currently 8 nm nodes, sometimes referred to as "half-nodes".
nice becomes useful when several processes are demanding more resources than the CPU can provide. In this state, a higher-priority process will get a larger chunk of the CPU time than a lower-priority process. Only the superuser (root) may set the niceness to a lower value (i.e. a
Ads
related to: how to decrease cpu processes