Search results
Results from the WOW.Com Content Network
In elementary algebra, root rationalisation (or rationalization) is a process by which radicals in the denominator of an algebraic fraction are eliminated.. If the denominator is a monomial in some radical, say , with k < n, rationalisation consists of multiplying the numerator and the denominator by , and replacing by x (this is allowed, as, by definition, a n th root of x is a number that ...
The continued fraction representation of a real number can be used instead of its decimal or binary expansion and this representation has the property that the square root of any rational number (which is not already a perfect square) has a periodic, repeating expansion, similar to how rational numbers have repeating expansions in the decimal ...
The square root of x is rational if and only if x is a rational number that can be represented as a ratio of two perfect squares. (See square root of 2 for proofs that this is an irrational number, and quadratic irrational for a proof for all non-square natural numbers.)
A rational fraction is an algebraic fraction whose numerator and denominator are both ... because the numerator contains a square root function. Terminology. In ...
Lagrange's discovery implies that the canonical continued fraction expansion of the square root of every non-square integer is periodic and that, if the period is of length p > 1, it contains a palindromic string of length p − 1. In 1813 Gauss derived from complex-valued hypergeometric functions what is now called Gauss's continued fractions ...
The rational root theorem (or integer root theorem) may be used to show that any square root of any natural number that is not a perfect square is irrational. For other proofs that the square root of any non-square natural number is irrational, see Quadratic irrational number or Infinite descent.
All rational numbers, and roots of rational numbers, are algebraic. So it might feel like “most” real numbers are algebraic. Turns out, it’s actually the opposite.
The square root of 2 is equal to the length of the hypotenuse of a right triangle with legs of length 1 and is therefore a constructible number. In geometry and algebra, a real number is constructible if and only if, given a line segment of unit length, a line segment of length | | can be constructed with compass and straightedge in a finite number of steps.