Search results
Results from the WOW.Com Content Network
Whether Ganymede has an ionosphere associated with its atmosphere is unresolved. [24] Ganymede's surface is composed of two main types of terrain, the first of which are lighter regions, generally crosscut by extensive grooves and ridges, dating from slightly less than 4 billion years ago, covering two-thirds of Ganymede.
Ganymede is composed primarily of silicate rock and water ice, and a salt-water ocean is believed to exist nearly 200 km below Ganymede's surface, sandwiched between layers of ice. [44] The metallic core of Ganymede suggests a greater heat at some time in its past than had previously been proposed.
All the gas giants in the Solar System, and likely those orbiting other stars, have magnetospheres with radiation belts potent enough to completely erode an atmosphere of an Earth-like moon in just a few hundred million years. Strong stellar winds can also strip gas atoms from the top of an atmosphere causing them to be lost to space.
The images provide new insights into the chemical composition of two of Jupiter’s moons.
Transfer to Ganymede: A series of Callisto and Ganymede gravity assists will be performed to gradually reduce Juice's speed by 1,600 m/s (3,600 mph). Finally, a series of distant ~45,000 km (28,000 mi) flybys of the far side of Ganymede (near the Jupiter-Ganymede-L2 Lagrange point ) will further reduce the required orbital insertion delta-V by ...
Relationship of the atmosphere and ionosphere. The ionosphere (/ aɪ ˈ ɒ n ə ˌ s f ɪər /) [1] [2] is the ionized part of the upper atmosphere of Earth, from about 48 km (30 mi) to 965 km (600 mi) above sea level, [3] a region that includes the thermosphere and parts of the mesosphere and exosphere. The ionosphere is ionized by solar ...
Cutaway drawing of two radiation belts around Earth: the inner belt (red) dominated by protons and the outer one (blue) by electrons. Image Credit: NASA. The inner Van Allen Belt extends typically from an altitude of 0.2 to 2 Earth radii (L values of 1.2 to 3) or 1,000 km (620 mi) to 12,000 km (7,500 mi) above the Earth.
These included strong absorption of light at the red end of the visible spectrum (especially over continents) by chlorophyll in photosynthesizing plants; absorption bands of molecular oxygen as a result of plant activity; infrared bands caused by the approximately 1 micromole per mole of methane (a gas which must be replenished by volcanic or ...