enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. pandas (software) - Wikipedia

    en.wikipedia.org/wiki/Pandas_(software)

    If data is a Series, then data['a'] returns all values with the index value of a. However, if data is a DataFrame, then data['a'] returns all values in the column(s) named a. To avoid this ambiguity, Pandas supports the syntax data.loc['a'] as an alternative way to filter using the index.

  3. Apache Spark - Wikipedia

    en.wikipedia.org/wiki/Apache_Spark

    The Dataframe API was released as an abstraction on top of the RDD, followed by the Dataset API. In Spark 1.x, the RDD was the primary application programming interface (API), but as of Spark 2.x use of the Dataset API is encouraged [3] even though the RDD API is not deprecated. [4] [5] The RDD technology still underlies the Dataset API. [6] [7]

  4. Word2vec - Wikipedia

    en.wikipedia.org/wiki/Word2vec

    An extension of word vectors for creating a dense vector representation of unstructured radiology reports has been proposed by Banerjee et al. [23] One of the biggest challenges with Word2vec is how to handle unknown or out-of-vocabulary (OOV) words and morphologically similar words. If the Word2vec model has not encountered a particular word ...

  5. Star schema - Wikipedia

    en.wikipedia.org/wiki/Star_schema

    Range dimension tables describe ranges of time, dollar values or other measurable quantities to simplify reporting Dimension tables are generally assigned a surrogate primary key , usually a single-column integer data type, mapped to the combination of dimension attributes that form the natural key.

  6. Levenshtein distance - Wikipedia

    en.wikipedia.org/wiki/Levenshtein_distance

    It is at least the absolute value of the difference of the sizes of the two strings. It is at most the length of the longer string. It is zero if and only if the strings are equal. If the strings have the same size, the Hamming distance is an upper bound on the Levenshtein distance. The Hamming distance is the number of positions at which the ...

  7. Hopkins statistic - Wikipedia

    en.wikipedia.org/wiki/Hopkins_statistic

    A typical formulation of the Hopkins statistic follows. [2]Let be the set of data points. Generate a random sample of data points sampled without replacement from . Generate a set of uniformly randomly distributed data points.

  8. Closeness centrality - Wikipedia

    en.wikipedia.org/wiki/Closeness_centrality

    In a connected graph, closeness centrality (or closeness) of a node is a measure of centrality in a network, calculated as the reciprocal of the sum of the length of the shortest paths between the node and all other nodes in the graph.