enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quadruple-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Quadruple-precision...

    This 128-bit quadruple precision is designed not only for applications requiring results in higher than double precision, [1] but also, as a primary function, to allow the computation of double precision results more reliably and accurately by minimising overflow and round-off errors in intermediate calculations and scratch variables.

  3. Integer overflow - Wikipedia

    en.wikipedia.org/wiki/Integer_overflow

    The register width of a processor determines the range of values that can be represented in its registers. Though the vast majority of computers can perform multiple-precision arithmetic on operands in memory, allowing numbers to be arbitrarily long and overflow to be avoided, the register width limits the sizes of numbers that can be operated on (e.g., added or subtracted) using a single ...

  4. Overflow flag - Wikipedia

    en.wikipedia.org/wiki/Overflow_flag

    The overflow flag is thus set when the most significant bit (here considered the sign bit) is changed by adding two numbers with the same sign (or subtracting two numbers with opposite signs). Overflow cannot occur when the sign of two addition operands are different (or the sign of two subtraction operands are the same). [1]

  5. Extended precision - Wikipedia

    en.wikipedia.org/wiki/Extended_precision

    The Motorola 6888x math coprocessors and the Motorola 68040 and 68060 processors also support a 64-bit significand extended-precision format (similar to the Intel format, although padded to a 96-bit format with 16 unused bits inserted between the exponent and significand fields, and values with exponent zero and bit 63 one are normalized values ...

  6. 128-bit computing - Wikipedia

    en.wikipedia.org/wiki/128-bit_computing

    The DEC VAX supported operations on 128-bit integer ('O' or octaword) and 128-bit floating-point ('H-float' or HFLOAT) datatypes. Support for such operations was an upgrade option rather than being a standard feature. Since the VAX's registers were 32 bits wide, a 128-bit operation used four consecutive registers or four longwords in memory.

  7. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    Arbitrary-precision arithmetic can also be used to avoid overflow, which is an inherent limitation of fixed-precision arithmetic. Similar to an automobile's odometer display which may change from 99999 to 00000, a fixed-precision integer may exhibit wraparound if numbers grow too large to represent at the fixed level of precision.

  8. IEEE 754-2008 revision - Wikipedia

    en.wikipedia.org/wiki/IEEE_754-2008_revision

    The binary interchange formats have the "half precision" (16-bit storage format) and "quad precision" (128-bit format) added, together with generalized formulae for some wider formats; the basic formats have 32-bit, 64-bit, and 128-bit encodings. Three new decimal formats are described, matching the lengths of the 32–128-bit binary formats.

  9. Time formatting and storage bugs - Wikipedia

    en.wikipedia.org/wiki/Time_formatting_and...

    On 5 January 1975, the 12-bit field that had been used for dates in the TOPS-10 operating system for DEC PDP-10 computers overflowed, in a bug known as "DATE75". The field value was calculated by taking the number of years since 1964, multiplying by 12, adding the number of months since January, multiplying by 31, and adding the number of days since the start of the month; putting 2 12 − 1 ...