enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    The Taylor series of any polynomial is the polynomial itself.. The Maclaurin series of ⁠ 1 / 1 − x ⁠ is the geometric series + + + +. So, by substituting x for 1 − x, the Taylor series of ⁠ 1 / x ⁠ at a = 1 is

  3. Series expansion - Wikipedia

    en.wikipedia.org/wiki/Series_expansion

    A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.

  4. Euler–Maclaurin formula - Wikipedia

    en.wikipedia.org/wiki/Euler–Maclaurin_formula

    In mathematics, the Euler–Maclaurin formula is a formula for the difference between an integral and a closely related sum.It can be used to approximate integrals by finite sums, or conversely to evaluate finite sums and infinite series using integrals and the machinery of calculus.

  5. Generating function - Wikipedia

    en.wikipedia.org/wiki/Generating_function

    The left-hand side is the Maclaurin series expansion of the right-hand side. Alternatively, the equality can be justified by multiplying the power series on the left by 1 − x, and checking that the result is the constant power series 1 (in other words, that all coefficients except the one of x 0 are equal to 0). Moreover, there can be no ...

  6. Logarithmic distribution - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_distribution

    In probability and statistics, the logarithmic distribution (also known as the logarithmic series distribution or the log-series distribution) is a discrete probability distribution derived from the Maclaurin series expansion

  7. Difference engine - Wikipedia

    en.wikipedia.org/wiki/Difference_engine

    The Taylor series expresses the function as a sum obtained from its derivatives at one point. For many functions the higher derivatives are trivial to obtain; for instance, the sine function at 0 has values of 0 or for all derivatives. Setting 0 as the start of computation we get the simplified Maclaurin series = ()!

  8. Exponential function - Wikipedia

    en.wikipedia.org/wiki/Exponential_function

    So, the derivative of the sum can be computed by term-by-term derivation, and this shows that the sum of the series satisfies the above definition. This is a second existence proof, and shows, as a byproduct, that the exponential function is defined for every ⁠ x {\displaystyle x} ⁠ , and is everywhere the sum of its Maclaurin series .

  9. Arctangent series - Wikipedia

    en.wikipedia.org/wiki/Arctangent_series

    Each term of this modified series is a rational function with its poles at = in the complex plane, the same place where the arctangent function has its poles. By contrast, a polynomial such as the Taylor series for arctangent forces all of its poles to infinity.