Search results
Results from the WOW.Com Content Network
The more slip systems a metal has, the less brittle it is, because plastic deformation can occur along many of these slip systems. Conversely, with fewer slip systems, less plastic deformation can occur, and the metal will be more brittle. For example, HCP (hexagonal close packed) metals have few active slip systems, and are typically brittle.
Metal-induced embrittlement (MIE) is the embrittlement caused by diffusion of atoms of metal, either solid or liquid, into the material. For example, cadmium coating on high-strength steel, which was originally done to prevent corrosion. Grain boundary segregation can cause brittle intergranular fracture. During solidification the grain ...
Hydrogen embrittles a variety of metals including steel, [19] [20] aluminium (at high temperatures only [21]), and titanium. [22] Austempered iron is also susceptible, though austempered steel (and possibly other austempered metals) displays increased resistance to hydrogen embrittlement. [23]
This page was last edited on 16 November 2024, at 12:16 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
The chemical elements can be broadly divided into metals, metalloids, and nonmetals according to their shared physical and chemical properties.All elemental metals have a shiny appearance (at least when freshly polished); are good conductors of heat and electricity; form alloys with other metallic elements; and have at least one basic oxide.
Some metals that are generally described as ductile include gold and copper, while platinum is the most ductile of all metals in pure form. [4] However, not all metals experience ductile failure as some can be characterized with brittle failure like cast iron. Polymers generally can be viewed as ductile materials as they typically allow for ...
Toughness is related to the area under the stress–strain curve.In order to be tough, a material must be both strong and ductile. For example, brittle materials (like ceramics) that are strong but with limited ductility are not tough; conversely, very ductile materials with low strengths are also not tough.
Neutron irradiation embrittlement limits the service life of reactor-pressure vessels (RPV) in nuclear power plants due to the degradation of reactor materials. In order to perform at high efficiency and safely contain coolant water at temperatures around 290°C and pressures of ~7 MPa (for boiling water reactors) to 14 MPa (for pressurized water reactors), the RPV must be heavy-section steel.