enow.com Web Search

  1. Ad

    related to: constructing geometric figures answer key pdf

Search results

  1. Results from the WOW.Com Content Network
  2. Straightedge and compass construction - Wikipedia

    en.wikipedia.org/wiki/Straightedge_and_compass...

    In geometry, straightedge-and-compass construction – also known as ruler-and-compass construction, Euclidean construction, or classical construction – is the construction of lengths, angles, and other geometric figures using only an idealized ruler and a pair of compasses.

  3. Constructible polygon - Wikipedia

    en.wikipedia.org/wiki/Constructible_polygon

    Construction of a regular pentagon. In mathematics, a constructible polygon is a regular polygon that can be constructed with compass and straightedge.For example, a regular pentagon is constructible with compass and straightedge while a regular heptagon is not.

  4. Geometric drawing - Wikipedia

    en.wikipedia.org/wiki/Geometric_drawing

    Geometric drawing made with ruler and compass. Geometric drawing consists of a set of processes for constructing geometric shapes and solving problems with the use of a ruler without graduation and the compass (drawing tool). [1] [2] Modernly, such studies can be done with the aid of software, which simulates the strokes performed by these ...

  5. Squaring the circle - Wikipedia

    en.wikipedia.org/wiki/Squaring_the_circle

    Squaring the circle is a problem in geometry first proposed in Greek mathematics.It is the challenge of constructing a square with the area of a given circle by using only a finite number of steps with a compass and straightedge.

  6. Mathematics of paper folding - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_paper_folding

    In 1893, Indian civil servant T. Sundara Row published Geometric Exercises in Paper Folding which used paper folding to demonstrate proofs of geometrical constructions. This work was inspired by the use of origami in the kindergarten system. Row demonstrated an approximate trisection of angles and implied construction of a cube root was ...

  7. Constructible number - Wikipedia

    en.wikipedia.org/wiki/Constructible_number

    The square root of 2 is equal to the length of the hypotenuse of a right triangle with legs of length 1 and is therefore a constructible number. In geometry and algebra, a real number is constructible if and only if, given a line segment of unit length, a line segment of length | | can be constructed with compass and straightedge in a finite number of steps.

  8. Angle trisection - Wikipedia

    en.wikipedia.org/wiki/Angle_trisection

    It follows that, given a segment that is defined to have unit length, the problem of angle trisection is equivalent to constructing a segment whose length is the root of a cubic polynomial. This equivalence reduces the original geometric problem to a purely algebraic problem. Every rational number is constructible.

  9. Geometric Exercises in Paper Folding - Wikipedia

    en.wikipedia.org/wiki/Geometric_Exercises_in...

    The book begins by constructing regular polygons beyond the classical constructible polygons of 3, 4, or 5 sides, or of any power of two times these numbers, and the construction by Carl Friedrich Gauss of the heptadecagon, it also provides a paper-folding construction of the regular nonagon, not possible with compass and straightedge. [6]

  1. Ad

    related to: constructing geometric figures answer key pdf