Search results
Results from the WOW.Com Content Network
X and Y are two whole numbers greater than 1, and Y > X. Their sum is not greater than 100. S and P are two mathematicians (and consequently perfect logicians); S knows the sum X + Y and P knows the product X × Y. Both S and P know all the information in this paragraph. In the following conversation, both participants are always telling the truth:
A term is a constant or the product of a constant and one or more variables. Some examples include 7 , 5 x , 13 x 2 y , 4 b {\displaystyle 7,\;5x,\;13x^{2}y,\;4b} The constant of the product is called the coefficient .
In mathematics, a product is the result of multiplication, or an expression that identifies objects (numbers or variables) to be multiplied, called factors.For example, 21 is the product of 3 and 7 (the result of multiplication), and (+) is the product of and (+) (indicating that the two factors should be multiplied together).
If x and y are integers, rationals, or real numbers, then xy = 0 implies x = 0 or y = 0. Consider abc = 0. Then, substituting a for x and bc for y, we learn a = 0 or bc = 0. Then we can substitute again, letting x = b and y = c, to show that if bc = 0 then b = 0 or c = 0. Therefore, if abc = 0, then a = 0 or (b = 0 or c = 0), so abc = 0 implies ...
The coefficient is −5, the indeterminates are x and y, the degree of x is two, while the degree of y is one. The degree of the entire term is the sum of the degrees of each indeterminate in it, so in this example the degree is 2 + 1 = 3. Forming a sum of several terms produces a polynomial.
The product of the entries in row i of columns A and B together with the respective sign give the relevant integrals in step i in the course of repeated integration by parts. Step i = 0 yields the original integral.
A non-vertical line can be defined by its slope m, and its y-intercept y 0 (the y coordinate of its intersection with the y-axis). In this case, its linear equation can be written = +. If, moreover, the line is not horizontal, it can be defined by its slope and its x-intercept x 0. In this case, its equation can be written
In geometry and algebra, the triple product is a product of three 3-dimensional vectors, usually Euclidean vectors.The name "triple product" is used for two different products, the scalar-valued scalar triple product and, less often, the vector-valued vector triple product.