Search results
Results from the WOW.Com Content Network
The beginning of population dynamics is widely regarded as the work of Malthus, formulated as the Malthusian growth model. According to Malthus, assuming that the conditions (the environment) remain constant ( ceteris paribus ), a population will grow (or decline) exponentially .
P 0 = P(0) is the initial population size, r = the population growth rate, which Ronald Fisher called the Malthusian parameter of population growth in The Genetical Theory of Natural Selection, [2] and Alfred J. Lotka called the intrinsic rate of increase, [3] [4] t = time. The model can also be written in the form of a differential equation:
Thomas Robert Malthus, after whom Malthusianism is named. Malthusianism is a theory that population growth is potentially exponential, according to the Malthusian growth model, while the growth of the food supply or other resources is linear, which eventually reduces living standards to the point of triggering a population decline.
Malthus argued in his Essay (1798) that population growth generally expanded in times and in regions of plenty until the size of the population relative to the primary resources caused distress: Yet in all societies, even those that are most vicious, the tendency to a virtuous attachment [i.e., marriage] is so strong that there is a constant ...
One of the most basic and milestone models of population growth was the logistic model of population growth formulated by Pierre François Verhulst in 1838. The logistic model takes the shape of a sigmoid curve and describes the growth of a population as exponential, followed by a decrease in growth, and bound by a carrying capacity due to ...
The first principle of population dynamics is widely regarded as the exponential law of Malthus, as modelled by the Malthusian growth model.The early period was dominated by demographic studies such as the work of Benjamin Gompertz and Pierre François Verhulst in the early 19th century, who refined and adjusted the Malthusian demographic model.
The population paradox is a counterintuitive result of some procedures for apportionment. When two states have populations increasing at different rates, a small state with rapid growth can lose a legislative seat to a big state with slower growth.
The doubling time is a characteristic unit (a natural unit of scale) for the exponential growth equation, and its converse for exponential decay is the half-life. As an example, Canada's net population growth was 2.7 percent in the year 2022, dividing 72 by 2.7 gives an approximate doubling time of about 27 years.