Search results
Results from the WOW.Com Content Network
A nozzle for a supersonic flow must increase in area in the flow direction, and a diffuser must decrease in area, opposite to a nozzle and diffuser for a subsonic flow. So, for a supersonic flow to develop from a reservoir where the velocity is zero, the subsonic flow must first accelerate through a converging area to a throat, followed by ...
Diffusers can be as a shape of round, rectangular, or can be as linear slot diffusers (LSDs). E.g., linear slot diffusers take the form of one or several long, narrow slots, mostly semi-concealed in a fixed or suspended ceiling with airfoils behind the slots directing the airflow in the desired direction.
For example, the Mach number evolution of an ideal gas in a supersonic nozzle depends only on the heat capacity ratio (namely on the fluid) and on the exhaust-to-stagnation pressure ratio. [6] Considering real-gas effects, instead, even fixing the fluid and the pressure ratio, different total states yield different Mach profiles. [17]
Air-aspirating nozzles use an opening in the cone shaped nozzle to inject air into a stream of water based foam (CAFS/AFFF/FFFP) to make the concentrate "foam up". Most commonly found on foam extinguishers and foam handlines. Swirl nozzles inject the liquid in tangentially, and it spirals into the center and then exits through the central hole ...
In a nozzle or other constriction, the discharge coefficient (also known as coefficient of discharge or efflux coefficient) is the ratio of the actual discharge to the ideal discharge, [1] i.e., the ratio of the mass flow rate at the discharge end of the nozzle to that of an ideal nozzle which expands an identical working fluid from the same initial conditions to the same exit pressures.
If the fluid is a liquid, a different type of limiting condition (also known as choked flow) occurs when the venturi effect acting on the liquid flow through the restriction causes a decrease of the liquid pressure beyond the restriction to below that of the liquid's vapor pressure at the prevailing liquid temperature.
The stator performs a nozzle action converting pressure head to velocity head. It is difficult to achieve adiabatic expansion in the impulse stage, i.e. expansion only in the nozzle, due to irreversibility involved, in actual practice. Figure 8 shows the corresponding enthalpy drop for the reaction = 0 case. Figure 8.
The throttling process is a good example of an isoenthalpic process in which significant changes in pressure and temperature can occur to the fluid, and yet the net sum the associated terms in the energy balance is null, thus rendering the transformation isoenthalpic. The lifting of a relief (or safety) valve on a pressure vessel is an example ...