Search results
Results from the WOW.Com Content Network
Green algae and plants possess two forms of this pigment: chlorophyll a and chlorophyll b. Kelps, diatoms, and other photosynthetic heterokonts contain chlorophyll c instead of b, while red algae possess only chlorophyll a. All chlorophylls serve as the primary means plants use to intercept light in order to fuel photosynthesis.
Algae lack the various structures that characterize plants (which evolved from freshwater green algae), such as the phyllids (leaf-like structures) and rhizoids of bryophytes (non-vascular plants), and the roots, leaves and other xylemic/phloemic organs found in tracheophytes (vascular plants). Most algae are autotrophic, although some are ...
Cyanobacteria is the only prokaryotic group that performs oxygenic photosynthesis. Anoxygenic photosynthetic bacteria use PSI- and PSII-like photosystems, which are pigment protein complexes for capturing light. [5] Both of these photosystems use bacteriochlorophyll. There are multiple hypotheses for how oxygenic photosynthesis evolved.
The pelagic food web, showing the central involvement of marine microorganisms in how the ocean imports nutrients from and then exports them back to the atmosphere and ocean floor. A marine food web is a food web of marine life. At the base of the ocean food web are single-celled algae and other plant-like organisms known as phytoplankton.
Marine algae can be divided into six groups: green, red and brown algae, euglenophytes, dinoflagellates and diatoms. Dinoflagellates and diatoms are important components of marine algae and have their own sections below. Euglenophytes are a phylum of unicellular flagellates with only a few marine members. Not all algae are microscopic.
In contrast, green plants, red algae, brown algae, and cyanobacteria are all autotrophs, which use photosynthesis to produce their own food from sunlight. Some fungi may be saprotrophic, meaning they will extracellularly secrete enzymes onto their food to be broken down into smaller, soluble molecules which can diffuse back into the fungus.
Photosynthesis (/ ˌ f oʊ t ə ˈ s ɪ n θ ə s ɪ s / FOH-tə-SINTH-ə-sis) [1] is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their metabolism.
The morphological similarity between chloroplasts and cyanobacteria was first reported by German botanist Andreas Franz Wilhelm Schimper in the 19th century [196] Chloroplasts are only found in plants and algae, [197] thus paving the way for Russian biologist Konstantin Mereschkowski to suggest in 1905 the symbiogenic origin of the plastid. [198]