Search results
Results from the WOW.Com Content Network
The energy entering through A 1 is the sum of the kinetic energy entering, the energy entering in the form of potential gravitational energy of the fluid, the fluid thermodynamic internal energy per unit of mass (ε 1) entering, and the energy entering in the form of mechanical p dV work: = (+ + +) where Ψ = gz is a force potential due to the ...
The bending moments and shear forces in Euler–Bernoulli beams can often be determined directly using static balance of forces and moments. However, for certain boundary conditions, the number of reactions can exceed the number of independent equilibrium equations. [5] Such beams are called statically indeterminate.
Bernoulli equation may refer to: Bernoulli differential equation; Bernoulli's equation, in fluid dynamics; Euler–Bernoulli beam equation, in solid mechanics
The dynamic pressure, along with the static pressure and the pressure due to elevation, is used in Bernoulli's principle as an energy balance on a closed system. The three terms are used to define the state of a closed system of an incompressible, constant-density fluid.
A solid is a material that can support a substantial amount of shearing force over a given time scale during a natural or industrial process or action. This is what distinguishes solids from fluids, because fluids also support normal forces which are those forces that are directed perpendicular to the material plane across from which they act and normal stress is the normal force per unit area ...
A generator converts mechanical energy into electrical energy. [19] A hydroelectric powerplant converts the mechanical energy of water in a storage dam into electrical energy. [20] An internal combustion engine is a heat engine that obtains mechanical energy from chemical energy by burning fuel. From this mechanical energy, the internal ...
Balance for some integrated fluid quantity in a control volume enclosed by a control surface. The assumptions inherent to a fluid mechanical treatment of a physical system can be expressed in terms of mathematical equations. Fundamentally, every fluid mechanical system is assumed to obey: Conservation of mass; Conservation of energy
By the principle of minimum energy, there are a number of other state functions which may be defined which have the dimensions of energy and which are minimized according to the second law under certain conditions other than constant entropy. These are called thermodynamic potentials. For each such potential, the relevant fundamental equation ...