enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multinomial logistic regression - Wikipedia

    en.wikipedia.org/wiki/Multinomial_logistic...

    Suppose the odds ratio between the two is 1 : 1. Now if the option of a red bus is introduced, a person may be indifferent between a red and a blue bus, and hence may exhibit a car : blue bus : red bus odds ratio of 1 : 0.5 : 0.5, thus maintaining a 1 : 1 ratio of car : any bus while adopting a changed car : blue bus ratio of 1 : 0.5.

  3. Logit - Wikipedia

    en.wikipedia.org/wiki/Logit

    If p is a probability, then p/(1 − p) is the corresponding odds; the logit of the probability is the logarithm of the odds, i.e.: ⁡ = ⁡ = ⁡ ⁡ = ⁡ = ⁡ (). The base of the logarithm function used is of little importance in the present article, as long as it is greater than 1, but the natural logarithm with base e is the one most often used.

  4. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    Logistic regression is used in various fields, including machine learning, most medical fields, and social sciences. For example, the Trauma and Injury Severity Score (), which is widely used to predict mortality in injured patients, was originally developed by Boyd et al. using logistic regression. [6]

  5. Mixed logit - Wikipedia

    en.wikipedia.org/wiki/Mixed_logit

    Mixed logit is a fully general statistical model for examining discrete choices.It overcomes three important limitations of the standard logit model by allowing for random taste variation across choosers, unrestricted substitution patterns across choices, and correlation in unobserved factors over time. [1]

  6. Seemingly unrelated regressions - Wikipedia

    en.wikipedia.org/wiki/Seemingly_unrelated...

    Here i represents the equation number, r = 1, …, R is the individual observation, and we are taking the transpose of the column vector. The number of observations R is assumed to be large, so that in the analysis we take R → ∞ {\displaystyle \infty } , whereas the number of equations m remains fixed.

  7. Kernel (statistics) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(statistics)

    In statistics, especially in Bayesian statistics, the kernel of a probability density function (pdf) or probability mass function (pmf) is the form of the pdf or pmf in which any factors that are not functions of any of the variables in the domain are omitted. [1] Note that such factors may well be functions of the parameters of the pdf or pmf.

  8. Conditional logistic regression - Wikipedia

    en.wikipedia.org/wiki/Conditional_logistic...

    Logistic regression as described above works satisfactorily when the number of strata is small relative to the amount of data. If we hold the number of strata fixed and increase the amount of data, estimates of the model parameters (for each stratum and the vector ) converge to their true values.

  9. Data transformation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Data_transformation...

    The distribution is extremely spiky and leptokurtic, this is the reason why researchers had to turn their backs to statistics to solve e.g. authorship attribution problems. Nevertheless, usage of Gaussian statistics is perfectly possible by applying data transformation. [11] 3.