Search results
Results from the WOW.Com Content Network
A counting Bloom filter is a probabilistic data structure that is used to test whether the number of occurrences of a given element in a sequence exceeds a given threshold. As a generalized form of the Bloom filter, false positive matches are possible, but false negatives are not – in other words, a query returns either "possibly bigger or equal than the threshold" or "definitely smaller ...
A common solution has been to run the algorithm multiple times with different hash functions and combine the results from the different runs. One idea is to take the mean of the results together from each hash function, obtaining a single estimate of the cardinality. The problem with this is that averaging is very susceptible to outliers (which ...
A frequency distribution table is an arrangement of the values that one or more variables take in a sample. Each entry in the table contains the frequency or count of the occurrences of values within a particular group or interval, and in this way, the table summarizes the distribution of values in the sample.
In computing, the count–min sketch (CM sketch) is a probabilistic data structure that serves as a frequency table of events in a stream of data.It uses hash functions to map events to frequencies, but unlike a hash table uses only sub-linear space, at the expense of overcounting some events due to collisions.
For problem instances in which the maximum key value is significantly smaller than the number of items, counting sort can be highly space-efficient, as the only storage it uses other than its input and output arrays is the Count array which uses space O(k).
Counting sort is applicable when each input is known to belong to a particular set, S, of possibilities. The algorithm runs in O(|S| + n) time and O(|S|) memory where n is the length of the input. It works by creating an integer array of size |S| and using the ith bin to count the occurrences of the ith member of S in the input. Each input is ...
Thus, the existence of duplicates does not affect the value of the extreme order statistics. There are other estimation techniques other than min/max sketches. The first paper on count-distinct estimation [7] describes the Flajolet–Martin algorithm, a bit pattern sketch. In this case, the elements are hashed into a bit vector and the sketch ...
However, when several counters share the same values, values are optimized according to the counter with the largest counting range, and produce sub-optimal accuracy for smaller counters. Mitigation is achieved by maintaining Independent Counter Estimation buckets, [ 3 ] which restrict the effect of a larger counter to the other counters in the ...