Search results
Results from the WOW.Com Content Network
For function that manipulate strings, modern object-oriented languages, like C# and Java have immutable strings and return a copy (in newly allocated dynamic memory), while others, like C manipulate the original string unless the programmer copies data to a new string.
Python supports a wide variety of string operations. Strings in Python are immutable, so a string operation such as a substitution of characters, that in other programming languages might alter the string in place, returns a new string in Python. Performance considerations sometimes push for using special techniques in programs that modify ...
COBOL uses the STRING statement to concatenate string variables. MATLAB and Octave use the syntax "[x y]" to concatenate x and y. Visual Basic and Visual Basic .NET can also use the "+" sign but at the risk of ambiguity if a string representing a number and a number are together. Microsoft Excel allows both "&" and the function "=CONCATENATE(X,Y)".
An easy way to calculate log 2 n on calculators that do not have a log 2 function is to use the natural logarithm (ln) or the common logarithm (log or log 10) functions, which are found on most scientific calculators. To change the logarithm base to 2 from e, 10, or any other base b, one can use the formulae: [50] [53]
ln(r) is the standard natural logarithm of the real number r. Arg(z) is the principal value of the arg function; its value is restricted to (−π, π]. It can be computed using Arg(x + iy) = atan2(y, x). Log(z) is the principal value of the complex logarithm function and has imaginary part in the range (−π, π].
Strings are passed to functions by passing a pointer to the first code unit. Since char * and wchar_t * are different types, the functions that process wide strings are different than the ones processing normal strings and have different names. String literals ("text" in the C source code) are converted to arrays during compilation. [2]
[2] A similar LNS named "signed logarithmic number system" (SLNS) was described in 1975 by Earl Swartzlander and Aristides Alexopoulos; rather than use two's complement notation for the logarithms, they offset them (scale the numbers being represented) to avoid negative logs. [3]
1. construct a string t that represents an algorithm T(j) such that T first simulates the computation of F a (i), then T simulates the computation of F b (j) and returns its result. 2. return P(t). We can now show that H decides the halting problem: Assume that the algorithm represented by a halts on input i.