Search results
Results from the WOW.Com Content Network
In category theory, a branch of mathematics, duality is a correspondence between the properties of a category C and the dual properties of the opposite category C op.Given a statement regarding the category C, by interchanging the source and target of each morphism as well as interchanging the order of composing two morphisms, a corresponding dual statement is obtained regarding the opposite ...
For every utility function v, there is a unique preference relation represented by v. However, the opposite is not true: a preference relation may be represented by many different utility functions. The same preferences could be expressed as any utility function that is a monotonically increasing transformation of v. E.g., if
In category theory, a branch of abstract mathematics, an equivalence of categories is a relation between two categories that establishes that these categories are "essentially the same". There are numerous examples of categorical equivalences from many areas of mathematics.
The expected utility of the above bet (with a 50% chance of receiving 100 and a 50% chance of receiving 0) is = (() + ()) /, and if the person has the utility function with u(0)=0, u(40)=5, and u(100)=10 then the expected utility of the bet equals 5, which is the same as the known utility of the amount 40. Hence the certainty equivalent is 40.
In category theory, a branch of mathematics, the opposite category or dual category C op of a given category C is formed by reversing the morphisms, i.e. interchanging the source and target of each morphism. Doing the reversal twice yields the original category, so the opposite of an opposite category is the original category itself.
Examples of alternatives to utility maximisation due to bounded rationality are; satisficing, elimination by aspects and the mental accounting heuristic. The satisficing heuristic is when a consumer defines an aspiration level and looks until they find an option that satisfies this, they will deem this option good enough and stop looking.
A utility function is considered to be measurable, if the strength of preference or intensity of liking of a good or service is determined with precision by the use of some objective criteria. For example, suppose that eating an apple gives to a person exactly half the pleasure of that of eating an orange.
In mathematics, a homothetic function is a monotonic transformation of a function which is homogeneous; [2] however, since ordinal utility functions are only defined up to an increasing monotonic transformation, there is a small distinction between the two concepts in consumer theory. [1]: 147