Search results
Results from the WOW.Com Content Network
For instance, high intensity might or might not indicate the presence of an atom column in that precise location (see simulation). The relationship between the exit wave and the image wave is a highly nonlinear one and is a function of the aberrations of the microscope. It is described by the contrast transfer function.
The effect of the contrast transfer function can be seen in the alternating light and dark rings (Thon rings), which show the relation between contrast and spatial frequency. The contrast transfer function (CTF) mathematically describes how aberrations in a transmission electron microscope (TEM) modify the image of a sample.
The mathematical function used to model cross-correlation curves in FCCS is slightly more complex compared to that used in FCS. One of the primary differences is the effective superimposed observation volume, denoted as V e f f , R G {\displaystyle \ V_{eff,RG}} in which the G and R channels form a single observation volume:
With electron beams, shorter-wavelength, higher-energy electrons used for higher-resolution imaging can cause damage to the sample by ionising it and breaking bonds, but electron-beam ptychography has now produced record-breaking images of molybdenum disulphide with a resolution of 0.039 nm using a lower-energy electron beam and detectors that ...
Tip, barrier and sample wave functions in a model of the scanning tunneling microscope. Barrier width is w. Tip bias is V. Surface work functions are ϕ. A model that is based on more realistic wave functions for the two electrodes was devised by John Bardeen in a study of the metal–insulator–metal junction. [16]
Due to its function, STED microscopy can often be used with other high-resolution methods. The resolution of both electron and atomic force microscopy is even better than STED resolution, but by combining atomic force with STED, Shima et al. were able to visualize the actin cytoskeleton of human ovarian cancer cells while observing changes in ...
Two-photon excitation microscopy of mouse intestine.Red: actin.Green: cell nuclei.Blue: mucus of goblet cells.Obtained at 780 nm using a Ti-sapphire laser.. Two-photon excitation microscopy (TPEF or 2PEF) is a fluorescence imaging technique that is particularly well-suited to image scattering living tissue of up to about one millimeter in thickness.
The microscope can then use the change in resonant frequency (f) as the SPM reference channel, either in feedback mode, or it can be recorded directly in constant height mode. While recording frequency-modulated images, an additional feedback loop is normally used to keep the amplitude of resonance constant, by adjusting the drive amplitude.