Search results
Results from the WOW.Com Content Network
For example, 4% electrical steel has an initial relative permeability (at or near 0 T) of 2,000 and a maximum of 38,000 at T = 1 [5] [6] and different range of values at different percent of Si and manufacturing process, and, indeed, the relative permeability of any material at a sufficiently high field strength trends toward 1 (at magnetic ...
A magnetic core is a piece of magnetic material with a high magnetic permeability used to confine and guide magnetic fields in electrical, electromechanical and magnetic devices such as electromagnets, transformers, electric motors, generators, inductors, loudspeakers, magnetic recording heads, and magnetic assemblies.
Strip of permalloy. Permalloy is a nickel–iron magnetic alloy, with about 80% nickel and 20% iron content.Invented in 1914 by physicist Gustav Elmen at Bell Telephone Laboratories, [1] it is notable for its very high magnetic permeability, which makes it useful as a magnetic core material in electrical and electronic equipment, and also in magnetic shielding to block magnetic fields.
Mu-metal typically has relative permeability values of 80,000–100,000 compared to several thousand for ordinary steel. It is a "soft" ferromagnetic material; it has low magnetic anisotropy and magnetostriction, [1] giving it a low coercivity so that it saturates at low magnetic fields.
Symbol used to represent in situ permeability tests in geotechnical drawings. In fluid mechanics, materials science and Earth sciences, the permeability of porous media (often, a rock or soil) is a measure of the ability for fluids (gas or liquid) to flow through the media; it is commonly symbolized as k.
It is a high permeability ferromagnetic alloy used in magnetic cores and magnetic shielding in electrical components, such as pulse transformers and ultra-sensitive magnetic amplifiers. It has a resistivity of 0.6 Ω ·mm 2 /m (or 6.0 x 10 −7 Ω·m), [ 1 ] an extremely high relative magnetic permeability (approximately 800 000 ), and a low ...
[1] [2] Its saturation flux density of around 2.4 tesla is the highest of any commercially available metal. Coupled with its low coercivity and core losses, its high saturation and permeability makes Permendur useful as magnetic cores in transformers, electric generators and other electrical equipment.
The permeability of ferromagnetic materials is not constant, but depends on H. In saturable materials the relative permeability increases with H to a maximum, then as it approaches saturation inverts and decreases toward one. [2] [3] Different materials have different saturation levels.