Search results
Results from the WOW.Com Content Network
Then they can be divided out and the resulting quadratic equation solved. In general, there exist only four possible cases of quartic equations with multiple roots, which are listed below: [3] Multiplicity-4 (M4): when the general quartic equation can be expressed as () =, for some real number. This case can always be reduced to a biquadratic ...
Finding the distance of closest approach of two ellipses involves solving a quartic equation. The eigenvalues of a 4×4 matrix are the roots of a quartic polynomial which is the characteristic polynomial of the matrix. The characteristic equation of a fourth-order linear difference equation or differential equation is a quartic
Solving quintic equations in terms of radicals (nth roots) was a major problem in algebra from the 16th century, when cubic and quartic equations were solved, until the first half of the 19th century, when the impossibility of such a general solution was proved with the Abel–Ruffini theorem.
A solution in radicals or algebraic solution is an expression of a solution of a polynomial equation that is algebraic, that is, relies only on addition, subtraction, multiplication, division, raising to integer powers, and extraction of n th roots (square roots, cube roots, etc.). A well-known example is the quadratic formula
A similar but more complicated method works for cubic equations, which have three resolvents and a quadratic equation (the "resolving polynomial") relating and , which one can solve by the quadratic equation, and similarly for a quartic equation (degree 4), whose resolving polynomial is a cubic, which can in turn be solved. [14]
Thus, its main application in optics is to solve the problem, "Find the point on a spherical convex mirror at which a ray of light coming from a given point must strike in order to be reflected to another point." This leads to an equation of the fourth degree. [2] [1] ( Alhazen himself never used this algebraic rewriting of the problem)
The cruciform curve, or cross curve is a quartic plane curve given by the equation = where a and b are two parameters determining the shape of the curve. The cruciform curve is related by a standard quadratic transformation, x ↦ 1/x, y ↦ 1/y to the ellipse a 2 x 2 + b 2 y 2 = 1, and is therefore a rational plane algebraic curve of genus zero.
Quartic reciprocity, a theorem from number theory; Quartic surface, a surface defined by an equation of degree 4; See also. All pages with titles beginning with Quartic ; All pages with titles containing Quartic; Quart (disambiguation) Quintic, relating to degree 5, as next higher above quartic; Cubic (disambiguation), relating to degree 3 or a ...