enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lateral earth pressure - Wikipedia

    en.wikipedia.org/wiki/Lateral_earth_pressure

    An example of lateral earth pressure overturning a retaining wall. The lateral earth pressure is the pressure that soil exerts in the horizontal direction. It is important because it affects the consolidation behavior and strength of the soil and because it is considered in the design of geotechnical engineering structures such as retaining walls, basements, tunnels, deep foundations and ...

  3. Rankine theory - Wikipedia

    en.wikipedia.org/wiki/Rankine_theory

    Rankine's theory (maximum-normal stress theory), developed in 1857 by William John Macquorn Rankine, [1] is a stress field solution that predicts active and passive earth pressure. It assumes that the soil is cohesionless, the wall is frictionless, the soil-wall interface is vertical, the failure surface on which the soil moves is planar , and ...

  4. Soil-structure interaction - Wikipedia

    en.wikipedia.org/wiki/Soil-structure_interaction

    The methods most used to mitigate the problem of the ground-structure interaction consist of the employment of the before-seen isolation systems and of some ground brace techniques, which are adopted above all on the low-quality ones (categories D and E). The most diffused techniques are the jet grouting technique and the pile work technique.

  5. Soil consolidation - Wikipedia

    en.wikipedia.org/wiki/Soil_consolidation

    The first modern theoretical models for soil consolidation were proposed in the 1920s by Terzaghi and Fillunger, according to two substantially different approaches. [1] The former was based on diffusion equations in eulerian notation, whereas the latter considered the local Newton’s law for both liquid and solid phases, in which main variables, such as partial pressure, porosity, local ...

  6. Effective stress - Wikipedia

    en.wikipedia.org/wiki/Effective_stress

    Erg Chebbi, Morocco. The effective stress can be defined as the stress, depending on the applied tension and pore pressure , which controls the strain or strength behaviour of soil and rock (or a generic porous body) for whatever pore pressure value or, in other terms, the stress which applied over a dry porous body (i.e. at =) provides the same strain or strength behaviour which is observed ...

  7. Earthquake engineering - Wikipedia

    en.wikipedia.org/wiki/Earthquake_engineering

    The following topics should be of primary concerns: liquefaction; dynamic lateral earth pressures on retaining walls; seismic slope stability; earthquake-induced settlement. [40] Nuclear facilities should not jeopardise their safety in case of earthquakes or other hostile external events.

  8. Slope stability analysis - Wikipedia

    en.wikipedia.org/wiki/Slope_stability_analysis

    Water pressure acting in the pore spaces, fractures or other discontinuities in the materials that make up the pit slope will reduce the strength of those materials. [6] Choice of correct analysis technique depends on both site conditions and the potential mode of failure, with careful consideration being given to the varying strengths ...

  9. Diaphragm (structural system) - Wikipedia

    en.wikipedia.org/wiki/Diaphragm_(structural_system)

    In structural engineering, a diaphragm is a structural element that transmits lateral loads to the vertical resisting elements of a structure (such as shear walls or frames). Diaphragms are typically horizontal but can be sloped in a gable roof on a wood structure or concrete ramp in a parking garage.