enow.com Web Search

  1. Ads

    related to: statements and reasons explained geometry

Search results

  1. Results from the WOW.Com Content Network
  2. Foundations of geometry - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_geometry

    Absolute geometry is a geometry based on an axiom system consisting of all the axioms giving Euclidean geometry except for the parallel postulate or any of its alternatives. [69] The term was introduced by János Bolyai in 1832. [70] It is sometimes referred to as neutral geometry, [71] as it is neutral with respect to the parallel postulate.

  3. Geometry - Wikipedia

    en.wikipedia.org/wiki/Geometry

    Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician who works in the field of geometry is called a geometer. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, [a] which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental ...

  4. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    Presenting many cases in which the statement holds is not enough for a proof, which must demonstrate that the statement is true in all possible cases. A proposition that has not been proved but is believed to be true is known as a conjecture, or a hypothesis if frequently used as an assumption for further mathematical work.

  5. Mathematics - Wikipedia

    en.wikipedia.org/wiki/Mathematics

    An axiom or postulate is a mathematical statement that is taken to be true without need of proof. If a mathematical statement has yet to be proven (or disproven), it is termed a conjecture. Through a series of rigorous arguments employing deductive reasoning, a statement that is proven to be true becomes a theorem.

  6. Conjecture - Wikipedia

    en.wikipedia.org/wiki/Conjecture

    A number of false proofs and false counterexamples have appeared since the first statement of the four color theorem in 1852. The four color theorem was ultimately proven in 1976 by Kenneth Appel and Wolfgang Haken. It was the first major theorem to be proved using a computer. Appel and Haken's approach started by showing that there is a ...

  7. Foundations of mathematics - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_mathematics

    Merely the use of formalism alone does not explain several issues: why we should use the axioms we do and not some others, why we should employ the logical rules we do and not some others, why "true" mathematical statements (e.g., the laws of arithmetic) appear to be true, and so on.

  8. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    Euclidean geometry is an axiomatic system, in which all theorems ("true statements") are derived from a small number of simple axioms. Until the advent of non-Euclidean geometry , these axioms were considered to be obviously true in the physical world, so that all the theorems would be equally true.

  9. Geometric mean theorem - Wikipedia

    en.wikipedia.org/wiki/Geometric_mean_theorem

    The converse statement is true as well. Any triangle, in which the altitude equals the geometric mean of the two line segments created by it, is a right triangle. The theorem can also be thought of as a special case of the intersecting chords theorem for a circle, since the converse of Thales' theorem ensures that the hypotenuse of the right ...

  1. Ads

    related to: statements and reasons explained geometry