Search results
Results from the WOW.Com Content Network
The satisfiability problem becomes more difficult if both "for all" and "there exists" quantifiers are allowed to bind the Boolean variables. An example of such an expression would be ∀ x ∀ y ∃ z ( x ∨ y ∨ z ) ∧ (¬ x ∨ ¬ y ∨ ¬ z ) ; it is valid, since for all values of x and y , an appropriate value of z can be found, viz. z ...
In computer science and formal methods, a SAT solver is a computer program which aims to solve the Boolean satisfiability problem.On input a formula over Boolean variables, such as "(x or y) and (x or not y)", a SAT solver outputs whether the formula is satisfiable, meaning that there are possible values of x and y which make the formula true, or unsatisfiable, meaning that there are no such ...
Though these data structures are convenient for manipulation (adding elements, deleting elements, etc.), they rely on many pointers, which increases their memory overhead, decreases cache locality, and increases cache misses, which renders them impractical for problems with large clause counts and large clause sizes.
In computer science and mathematical logic, satisfiability modulo theories (SMT) is the problem of determining whether a mathematical formula is satisfiable.It generalizes the Boolean satisfiability problem (SAT) to more complex formulas involving real numbers, integers, and/or various data structures such as lists, arrays, bit vectors, and strings.
A problem related to satisfiability is that of finite satisfiability, which is the question of determining whether a formula admits a finite model that makes it true. For a logic that has the finite model property , the problems of satisfiability and finite satisfiability coincide, as a formula of that logic has a model if and only if it has a ...
The Boolean satisfiability problem (SAT) asks to determine if a propositional formula (example depicted) can be made true by an appropriate assignment ("solution") of truth values to its variables. While it is easy to verify whether a given assignment renders the formula true , [ 1 ] no essentially faster method to find a satisfying assignment ...
MAX-SAT is one of the optimization extensions of the boolean satisfiability problem, which is the problem of determining whether the variables of a given Boolean formula can be assigned in such a way as to make the formula evaluate to TRUE. If the clauses are restricted to have at most 2 literals, as in 2-satisfiability, we get the MAX-2SAT ...
The Boolean satisfiability problem is NP-complete, and consequently, tautology is co-NP-complete. It is widely believed that (equivalently for all NP-complete problems) no polynomial-time algorithm can solve the satisfiability problem, although some algorithms perform well on special classes of formulas, or terminate quickly on many instances.