Search results
Results from the WOW.Com Content Network
The problem of deciding the satisfiability of a given conjunction of Horn clauses is called Horn-satisfiability, or HORN-SAT. It can be solved in polynomial time by a single step of the unit propagation algorithm, which produces the single minimal model of the set of Horn clauses (w.r.t. the set of literals assigned to TRUE).
There is often only a small difference between a problem in P and an NP-complete problem. For example, the 3-satisfiability problem, a restriction of the Boolean satisfiability problem, remains NP-complete, whereas the slightly more restricted 2-satisfiability problem is in P (specifically, it is NL-complete), but the slightly more general max ...
Boolean satisfiability problem (SAT). [2] [3]: LO1 There are many variations that are also NP-complete. An important variant is where each clause has exactly three literals (3SAT), since it is used in the proof of many other NP-completeness results. [3]: p. 48 Circuit satisfiability problem; Conjunctive Boolean query [3]: SR31
A decision problem is in NP if it can be decided by a non-deterministic Turing machine in polynomial time.. An instance of the Boolean satisfiability problem is a Boolean expression that combines Boolean variables using Boolean operators.
A problem related to satisfiability is that of finite satisfiability, which is the question of determining whether a formula admits a finite model that makes it true. For a logic that has the finite model property , the problems of satisfiability and finite satisfiability coincide, as a formula of that logic has a model if and only if it has a ...
The first natural problem proven to be NP-complete was the Boolean satisfiability problem, also known as SAT. As noted above, this is the Cook–Levin theorem; its proof that satisfiability is NP-complete contains technical details about Turing machines as they relate to the definition of NP.
The complexity class NP, on the other hand, contains many problems that people would like to solve efficiently, but for which no efficient algorithm is known, such as the Boolean satisfiability problem, the Hamiltonian path problem and the vertex cover problem. Since deterministic Turing machines are special non-deterministic Turing machines ...
Euler diagram for P, NP, NP-complete, and NP-hard set of problems. Under the assumption that P ≠ NP, the existence of problems within NP but outside both P and NP-complete was established by Ladner. [1] In computational complexity theory, NP (nondeterministic polynomial time) is a complexity class used to classify decision problems.