enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    Gravity decreases with altitude as one rises above the Earth's surface because greater altitude means greater distance from the Earth's centre. All other things being equal, an increase in altitude from sea level to 9,000 metres (30,000 ft) causes a weight decrease of about 0.29%.

  3. List of gravitationally rounded objects of the Solar System

    en.wikipedia.org/wiki/List_of_gravitationally...

    According to the IAU's explicit count, there are eight planets in the Solar System; four terrestrial planets (Mercury, Venus, Earth, and Mars) and four giant planets, which can be divided further into two gas giants (Jupiter and Saturn) and two ice giants (Uranus and Neptune). When excluding the Sun, the four giant planets account for more than ...

  4. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    At a fixed point on the surface, the magnitude of Earth's gravity results from combined effect of gravitation and the centrifugal force from Earth's rotation. [2] [3] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s 2 (32.03 to 32.26 ft/s 2), [4] depending on altitude, latitude, and longitude.

  5. Standard gravitational parameter - Wikipedia

    en.wikipedia.org/wiki/Standard_gravitational...

    The standard gravitational parameter μ of a celestial body is the product of the gravitational constant G and the mass M of that body. For two bodies, the parameter may be expressed as G(m 1 + m 2), or as GM when one body is much larger than the other: = (+).

  6. Hill sphere - Wikipedia

    en.wikipedia.org/wiki/Hill_sphere

    The actual Hill radius for the Earth-Moon pair is on the order of 60,000 km (i.e., extending less than one-sixth the distance of the 378,000 km between the Moon and the Earth). [ 9 ] In the Earth-Sun example, the Earth ( 5.97 × 10 24 kg ) orbits the Sun ( 1.99 × 10 30 kg ) at a distance of 149.6 million km, or one astronomical unit (AU).

  7. Why isn’t Venus like Earth? New space mission aims to find out

    www.aol.com/space-missions-probe-mysteries-venus...

    Venus is similar in size and distance from the sun when compared with Earth, and some researchers believe the planet might have even had an Earth-like climate at some point.

  8. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    Cavendish's stated aim was the "weighing of Earth", that is, determining the average density of Earth and the Earth's mass. His result, ρ 🜨 = 5.448(33) g⋅cm −3, corresponds to value of G = 6.74(4) × 10 −11 m 3 ⋅kg −1 ⋅s −2. It is surprisingly accurate, about 1% above the modern value (comparable to the claimed relative ...

  9. Gravimetry - Wikipedia

    en.wikipedia.org/wiki/Gravimetry

    These changes can be the result of mass displacements inside the Earth, or of vertical movements of the Earth's crust on which measurements are being made. [c] The first gravimeters were vertical accelerometers, specialized for measuring the constant downward acceleration of gravity on the Earth's surface. The Earth's vertical gravity varies ...