Search results
Results from the WOW.Com Content Network
The Schottky effect or field enhanced thermionic emission is a phenomenon in condensed matter physics named after Walter H. Schottky. In electron emission devices, especially electron guns , the thermionic electron emitter will be biased negative relative to its surroundings.
A Schottky barrier, named after Walter H. Schottky, is a potential energy barrier for electrons formed at a metal–semiconductor junction. Schottky barriers have rectifying characteristics, suitable for use as a diode. One of the primary characteristics of a Schottky barrier is the Schottky barrier height, denoted by Φ B (see figure).
In this regime, the combined effects of field-enhanced thermionic and field emission can be modeled by the Murphy-Good equation for thermo-field (T-F) emission. [35] At even higher fields, FN tunneling becomes the dominant electron emission mechanism, and the emitter operates in the so-called "cold field electron emission (CFE)" regime.
Radiative transitions involve either the absorption or emission of a photon. As mentioned above, these transitions are denoted with solid arrows with their tails at the initial energy level and their tips at the final energy level. Nonradiative transitions arise through several different mechanisms, all differently labeled in the diagram.
The depletion capacitance leading to Mott–Schottky plot is situated in the high frequency arc, as the depletion capacitance is a dielectric capacitance. On the other hand, the low frequency feature corresponds to the chemical capacitance of the surface states. The surface state charging produces a plateau as indicated in Fig. 1d.
In physics, electron emission is the ejection of an electron from the surface of matter, [1] or, in beta decay (β− decay), where a beta particle (a fast energetic electron or positron) is emitted from an atomic nucleus transforming the original nuclide to an isobar.
The work function W for a given surface is defined by the difference [1] =, where −e is the charge of an electron, ϕ is the electrostatic potential in the vacuum nearby the surface, and E F is the Fermi level (electrochemical potential of electrons) inside the material.
A Schottky defect is an excitation of the site occupations in a crystal lattice leading to point defects named after Walter H. Schottky. In ionic crystals , this defect forms when oppositely charged ions leave their lattice sites and become incorporated for instance at the surface, creating oppositely charged vacancies .