Search results
Results from the WOW.Com Content Network
Submerged specific gravity is a dimensionless measure of an object's buoyancy when immersed in a fluid.It can be expressed in terms of the equation = where stands for "submerged specific gravity", is the density of the object, and is the density of the fluid.
A United States Navy Aviation boatswain's mate tests the specific gravity of JP-5 fuel. Relative density, also called specific gravity, [1] [2] is a dimensionless quantity defined as the ratio of the density (mass of a unit volume) of a substance to the density of a given reference material.
The purpose of On Floating Bodies I-II was to determine the positions that various solids will assume when floating in a fluid, according to their form and the variation in their specific gravities. The work is known for containing the first statement of what is now known as Archimedes' principle .
The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...
The procedure, pioneered by Behnke, Feen and Welham as means to later quantify the relation between specific gravity and the fat content, [1] is based on Archimedes' principle, which states that: The buoyant force which water exerts on an immersed object is equal to the weight of water that the object displaces.
Ship stability illustration explaining the stable and unstable dynamics of buoyancy (B), center of buoyancy (CB), center of gravity (CG), and weight (W) Ship stability is an area of naval architecture and ship design that deals with how a ship behaves at sea, both in still water and in waves, whether intact or damaged.
Gravity gradiometry is the study of variations in the Earth's gravity field via measurements of the spatial gradient of gravitational acceleration. The gravity gradient tensor is a 3x3 tensor representing the partial derivatives, along each coordinate axis , of each of the three components of the acceleration vector ( g = [ g x g y g z ] T ...
where R is the submerged specific gravity of the sediment. The second assumption is that the particle Reynolds number is high. This typically applies to particles of gravel-size or larger in a stream, and means the critical shear stress is constant.