Search results
Results from the WOW.Com Content Network
The three-body problem is a special case of the n-body problem, which describes how n objects move under one of the physical forces, such as gravity. These problems have a global analytical solution in the form of a convergent power series, as was proven by Karl F. Sundman for n = 3 and by Qiudong Wang for n > 3 (see n-body problem for details
The Euler three-body problem is known by a variety of names, such as the problem of two fixed centers, the Euler–Jacobi problem, and the two-center Kepler problem. The exact solution, in the full three dimensional case, can be expressed in terms of Weierstrass's elliptic functions [ 2 ] For convenience, the problem may also be solved by ...
One of the first to study this problem was Max Born in his 1909 paper about the consequences of a charge in uniformly accelerated frame. [1] Earlier concerns and possible solutions were raised by Wolfgang Pauli (1918), [ 2 ] Max von Laue (1919), [ 3 ] and others, but the most recognized work on the subject is the resolution of Thomas Fulton and ...
1.1 Gravitation and other inverse-square ... Download as PDF; Printable version ... is the key to the two-body problem. The solution depends on the specific force ...
The two-body problem in general relativity (or relativistic two-body problem) is the determination of the motion and gravitational field of two bodies as described by the field equations of general relativity. Solving the Kepler problem is essential to calculate the bending of light by gravity and the motion of a planet orbiting its sun.
Gravitation is a widely adopted textbook on Albert Einstein's general theory of relativity, written by Charles W. Misner, Kip S. Thorne, and John Archibald Wheeler. It was originally published by W. H. Freeman and Company in 1973 and reprinted by Princeton University Press in 2017.
This problem, called the cosmological constant problem, is a hierarchy problem very similar to that of the Higgs boson mass problem, since the cosmological constant is also very sensitive to quantum corrections, but it is complicated by the necessary involvement of general relativity in the problem. Proposed solutions to the cosmological ...
Consequently, Einstein–Cartan theory is able to avoid the general-relativistic problem of the singularity at the Big Bang. [ 18 ] [ 19 ] The minimal coupling between torsion and Dirac spinors generates an effective nonlinear spin–spin self-interaction, which becomes significant inside fermionic matter at extremely high densities.