Search results
Results from the WOW.Com Content Network
Cell potency is a cell's ability to differentiate into other cell types. [1] [2] The more cell types a cell can differentiate into, the greater its potency.Potency is also described as the gene activation potential within a cell, which like a continuum, begins with totipotency to designate a cell with the most differentiation potential, pluripotency, multipotency, oligopotency, and finally ...
In mammals, only the zygote and subsequent blastomeres are totipotent, while in plants, many differentiated cells can become totipotent with simple laboratory techniques. A cell that can differentiate into all cell types of the adult organism is known as pluripotent.
Pluripotent, embryonic stem cells originate as inner cell mass (ICM) cells within a blastocyst. These stem cells can become any tissue in the body, excluding a placenta. Only cells from an earlier stage of the embryo, known as the morula, are totipotent, able to become all tissues in the body and the extraembryonic placenta. Human embryonic ...
The pluripotency of biological compounds describes the ability of certain substances to produce several distinct biological responses. Pluripotent is also described as something that has no fixed developmental potential, as in being able to differentiate into different cell types in the case of pluripotent stem cells.
Mesenchymal stem cells (MSCs), also known as mesenchymal stromal cells or medicinal signaling cells, are multipotent stromal cells that can differentiate into a variety of cell types, including osteoblasts (bone cells), chondrocytes (cartilage cells), myocytes (muscle cells) and adipocytes (fat cells which give rise to marrow adipose tissue).
Induced pluripotent stem cells are similar to natural pluripotent stem cells, such as embryonic stem cells, in many aspects, such as the expression of certain stem cell genes and proteins, chromatin methylation patterns, doubling time, embryoid body formation, teratoma formation, viable chimera formation, and potency and differentiability, but ...
Naïve pluripotent stem cells (e.g. ESC) and primed pluripotent stem cells (e.g. EpiSC) not only sustain the ability to self-renew but also maintain the capacity to differentiate. [2] Since the cell status is primed to differentiate in EpiSCs, however, one copy of the X chromosome in XX cells (female cells) in EpiSCs is silenced (XaXi).
A stem cell possesses two properties: . Self-renewal is the ability to go through numerous cycles of cell division while still maintaining its undifferentiated state. Stem cells can replicate several times and can result in the formation of two stem cells, one stem cell more differentiated than the other, or two differentiated cells.