Search results
Results from the WOW.Com Content Network
Thermal equilibrium exists when the power supplied by the star is equal to the power emitted by the planet. The temperature at which this balance occurs is the planetary equilibrium temperature. [4] [5] [6]
The effective temperature of the Sun (5778 kelvins) is the temperature a black body of the same size must have to yield the same total emissive power.. The effective temperature of a star is the temperature of a black body with the same luminosity per surface area (F Bol) as the star and is defined according to the Stefan–Boltzmann law F Bol = σT eff 4.
Since 2008, there have been five dwarf planets recognized by the IAU, although only Pluto has actually been confirmed to be in hydrostatic equilibrium [25] (Ceres is close to equilibrium, though some anomalies remain unexplained). [26] Ceres orbits in the asteroid belt, between Mars and Jupiter. The others all orbit beyond Neptune.
In equilibrium, for each frequency, the intensity of radiation which is emitted and reflected from a body relative to other frequencies (that is, the net amount of radiation leaving its surface, called the spectral radiance) is determined solely by the equilibrium temperature and does not depend upon the shape, material or structure of the body ...
Based on the orbits of the planets and the luminosity and effective temperature of the host star, the equilibrium temperatures of the planets can be calculated. Assuming an extremely high albedo of 0.9 and absence of greenhouse effect , the outer planet Kepler-42 d would have an equilibrium temperature of about 280 K (7 °C), [ 7 ] similar to ...
Radiative forcing is defined in the IPCC Sixth Assessment Report as follows: "The change in the net, downward minus upward, radiative flux (expressed in W/m 2) due to a change in an external driver of climate change, such as a change in the concentration of carbon dioxide (CO 2), the concentration of volcanic aerosols or the output of the Sun." [3]: 2245
For a planet with an atmosphere, these temperatures can be different than the mean surface temperature, which may be measured as the global-mean surface air temperature, [20] or as the global-mean surface skin temperature. [21] A radiative equilibrium temperature is calculated for the case that the supply of energy from within the planet (for ...
The strong (fourth-power) temperature sensitivity maintains a near-balance of the outgoing energy flow to the incoming flow via small changes in the planet's absolute temperatures. Increase in the Earth's non-cloud greenhouse effect (2000–2022) based on satellite data.