Search results
Results from the WOW.Com Content Network
In electromagnetism, the magnetic moment or magnetic dipole moment is the combination of strength and orientation of a magnet or other object or system that exerts a magnetic field. The magnetic dipole moment of an object determines the magnitude of torque the object experiences in a given magnetic field. When the same magnetic field is applied ...
The global definition of the Earth's field is based on a mathematical model. If a line is drawn through the center of the Earth, parallel to the moment of the best-fitting magnetic dipole, the two positions where it intersects the Earth's surface are called the North and South geomagnetic poles.
The spacing between field lines is an indicator of the relative strength of the magnetic field. Where magnetic field lines converge the field grows stronger, and where they diverge, weaker. Now, it can be shown that in the motion of gyrating particles, the "magnetic moment" μ = W ⊥ /B (or relativistically, p ⊥ 2 /2mγB) stays very nearly ...
Plot showing field lines (which, in three dimensions would describe "shells") for L-values 1.5, 2, 3, 4 and 5 using a dipole model of the Earth's magnetic field. The L-shell, L-value, or McIlwain L-parameter (after Carl E. McIlwain) is a parameter describing a particular set of planetary magnetic field lines.
The magnetic moment of an object is an intrinsic property and does not change with distance, and thus can be used to measure "how strong" a magnet is. For example, Earth possesses an enormous magnetic moment, however we are very distant from its center and experience only a tiny magnetic flux density (measured in tesla ) on its surface.
The Earth's magnetic North Pole is currently moving toward Russia in a way that British scientists have not seen before. ... but this spot stays at the same place as it is where all lines of ...
Plot showing field lines (which, in three dimensions would describe "shells") for L-values 1.5, 2, 3, 4 and 5 using a dipole model of the Earth's magnetic field. The dipole model of the Earth's magnetic field is a first order approximation of the rather complex true Earth's magnetic field. Due to effects of the interplanetary magnetic field ...
Since the magnetic Lorentz force is always perpendicular to the magnetic field, it has no influence (to lowest order) on the parallel motion. In a uniform field with no additional forces, a charged particle will gyrate around the magnetic field according to the perpendicular component of its velocity and drift parallel to the field according to its initial parallel velocity, resulting in a ...