Search results
Results from the WOW.Com Content Network
For example, the ground state of a carbon atom is 3 P (Term symbol). The superscript three (read as triplet) indicates that the multiplicity 2S+1 = 3, so that the total spin S = 1. This spin is due to two unpaired electrons, as a result of Hund's rule which favors the single filling of degenerate orbitals. The triplet consists of three states ...
Examples of atoms in singlet, doublet, and triplet states. In quantum mechanics, a triplet state, or spin triplet, is the quantum state of an object such as an electron, atom, or molecule, having a quantum spin S = 1. It has three allowed values of the spin's projection along a given axis m S = −1, 0, or +1, giving the name "triplet".
Examples of atoms in singlet, doublet, and triplet states. In quantum mechanics, a doublet is a composite quantum state of a system with an effective spin of 1/2, such that there are two allowed values of the spin component, −1/2 and +1/2.
The ability of positronium to form both singlet and triplet states is described mathematically by saying that the product of two doublet representations (meaning the electron and positron, which are both spin-1/2 doublets) can be decomposed into the sum of an adjoint representation (the triplet or spin 1 state) and a trivial representation (the ...
The best known example is a spin multiplet, which describes symmetries of a group representation of an SU(2) subgroup of the Lorentz algebra, which is used to define spin quantization. A spin singlet is a trivial representation, a spin doublet is a fundamental representation and a spin triplet is in the vector representation or adjoint ...
The reverse process is also possible for cases such as [Fe 6](BF 4) 2, but the singlet state is not fully regenerated, as the energy needed to excite the quintet ground state to the necessary excited state to undergo intersystem crossing to the triplet state overlaps with multiple bands corresponding to excitations of the singlet state that ...
Singlet fission is a spin-allowed process, unique to molecular photophysics, whereby one singlet excited state is converted into two triplet states.The phenomenon has been observed in molecular crystals, aggregates, disordered thin films, and covalently-linked dimers, where the chromophores are oriented such that the electronic coupling between singlet and the double triplet states is large.
Diradicals are usually triplets.The phrases singlet and triplet are derived from the multiplicity of states of diradicals in electron spin resonance: a singlet diradical has one state (S=0, M s =2*0+1=1, m s =0) and exhibits no signal in EPR and a triplet diradical has 3 states (S=1, M s =2*1+1=3, m s =-1; 0; 1) and shows in EPR 2 peaks (if no hyperfine splitting).