Search results
Results from the WOW.Com Content Network
A polytropic process is a thermodynamic process that obeys the relation: = where p is the pressure , V is volume , n is the polytropic index , and C is a constant. The polytropic process equation describes expansion and compression processes which include heat transfer.
Note: The isentropic assumptions are only applicable with ideal cycles. Real cycles have inherent losses due to compressor and turbine inefficiencies and the second law of thermodynamics. Real systems are not truly isentropic, but isentropic behavior is an adequate approximation for many calculation purposes.
In thermodynamic terms, this is a consequence of the fact that the internal pressure of an ideal gas vanishes. Mayer's relation allows us to deduce the value of C V from the more easily measured (and more commonly tabulated) value of C P : C V = C P − n R . {\displaystyle C_{V}=C_{P}-nR.}
The normalized density as a function of scale length for a wide range of polytropic indices. In astrophysics, a polytrope refers to a solution of the Lane–Emden equation in which the pressure depends upon the density in the form = (+) / = + /, where P is pressure, ρ is density and K is a constant of proportionality. [1]
Many other thermodynamic processes will result in a change in volume. A polytropic process, in particular, causes changes to the system so that the quantity is constant (where is pressure, is volume, and is the polytropic index, a constant). Note that for specific polytropic indexes, a polytropic process will be equivalent to a constant ...
The isentropic stagnation state is the state a flowing fluid would attain if it underwent a reversible adiabatic deceleration to zero velocity. There are both actual and the isentropic stagnation states for a typical gas or vapor. Sometimes it is advantageous to make a distinction between the actual and the isentropic stagnation states.
Polytropic compression will use a value of between 0 (a constant-pressure process) and infinity (a constant volume process). For the typical case where an effort is made to cool the gas compressed by an approximately adiabatic process, the value of n {\displaystyle n} will be between 1 and κ {\displaystyle \kappa } .
Description of each point in the thermodynamic cycles. The Otto Cycle is an example of a reversible thermodynamic cycle. 1→2: Isentropic / adiabatic expansion: Constant entropy (s), Decrease in pressure (P), Increase in volume (v), Decrease in temperature (T)