enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Separation of variables - Wikipedia

    en.wikipedia.org/wiki/Separation_of_variables

    or equivalently, = ()because of the substitution rule for integrals.. If one can evaluate the two integrals, one can find a solution to the differential equation. Observe that this process effectively allows us to treat the derivative as a fraction which can be separated.

  3. Symbolab - Wikipedia

    en.wikipedia.org/wiki/Symbolab

    Symbolab is an answer engine [1] that provides step-by-step solutions to mathematical problems in a range of subjects. [2] It was originally developed by Israeli start-up company EqsQuest Ltd., under whom it was released for public use in 2011.

  4. Integration by substitution - Wikipedia

    en.wikipedia.org/wiki/Integration_by_substitution

    In calculus, integration by substitution, also known as u-substitution, reverse chain rule or change of variables, [1] is a method for evaluating integrals and antiderivatives. It is the counterpart to the chain rule for differentiation , and can loosely be thought of as using the chain rule "backwards."

  5. Change of variables - Wikipedia

    en.wikipedia.org/wiki/Change_of_variables

    Difficult integrals may also be solved by simplifying the integral using a change of variables given by the corresponding Jacobian matrix and determinant. [1] Using the Jacobian determinant and the corresponding change of variable that it gives is the basis of coordinate systems such as polar, cylindrical, and spherical coordinate systems.

  6. Change of variables (PDE) - Wikipedia

    en.wikipedia.org/wiki/Change_of_variables_(PDE)

    Often, theory can establish the existence of a change of variables, although the formula itself cannot be explicitly stated. For an integrable Hamiltonian system of dimension , with ˙ = / and ˙ = /, there exist integrals .

  7. Euler substitution - Wikipedia

    en.wikipedia.org/wiki/Euler_substitution

    Euler substitution is a method for evaluating integrals of the form ∫ R ( x , a x 2 + b x + c ) d x , {\displaystyle \int R(x,{\sqrt {ax^{2}+bx+c}})\,dx,} where R {\displaystyle R} is a rational function of x {\displaystyle x} and a x 2 + b x + c {\textstyle {\sqrt {ax^{2}+bx+c}}} .

  8. Cauchy–Euler equation - Wikipedia

    en.wikipedia.org/wiki/Cauchy–Euler_equation

    Let y (n) (x) be the nth derivative of the unknown function y(x).Then a Cauchy–Euler equation of order n has the form () + () + + =. The substitution = (that is, = ⁡ (); for <, in which one might replace all instances of by | |, extending the solution's domain to {}) can be used to reduce this equation to a linear differential equation with constant coefficients.

  9. Integration using Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Integration_using_Euler's...

    Using Euler's formula, any trigonometric function may be written in terms of complex exponential functions, namely and and then integrated. This technique is often simpler and faster than using trigonometric identities or integration by parts , and is sufficiently powerful to integrate any rational expression involving trigonometric functions.