enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    This formula can be straightforwardly transformed into a formula for the roots of a general cubic equation, using the back-substitution described in § Depressed cubic. The formula can be proved as follows: Starting from the equation t 3 + pt + q = 0 , let us set t = u cos θ .

  3. Cubic function - Wikipedia

    en.wikipedia.org/wiki/Cubic_function

    The graph of any cubic function is similar to such a curve. The graph of a cubic function is a cubic curve, though many cubic curves are not graphs of functions. Although cubic functions depend on four parameters, their graph can have only very few shapes. In fact, the graph of a cubic function is always similar to the graph of a function of ...

  4. Quartic equation - Wikipedia

    en.wikipedia.org/wiki/Quartic_equation

    This is a cubic equation in y. Solve for y using any method for solving such equations (e.g. conversion to a reduced cubic and application of Cardano's formula). Any of the three possible roots will do.

  5. Cubic equations of state - Wikipedia

    en.wikipedia.org/wiki/Cubic_equations_of_state

    The cubic-plus-chain (CPC) [28] [29] [30] equation of state hybridizes the classical cubic equation of state with the SAFT chain term. [21] [22] The addition of the chain term allows the model to be capable of capturing the physics of both short-chain and long-chain non-associating components ranging from alkanes to polymers. The CPC monomer ...

  6. Vieta's formulas - Wikipedia

    en.wikipedia.org/wiki/Vieta's_formulas

    The concept of Vieta's formula can be found in the work of the 12th century Arabic mathematician Sharaf al-Din al-Tusi. It is plausible that the algebraic advancements made by Arabic mathematicians such as al-Khayyam, al-Tusi, and al-Kashi influenced 16th-century algebraists, with Vieta being the most prominent among them.

  7. Casus irreducibilis - Wikipedia

    en.wikipedia.org/wiki/Casus_irreducibilis

    Casus irreducibilis (from Latin 'the irreducible case') is the name given by mathematicians of the 16th century to cubic equations that cannot be solved in terms of real radicals, that is to those equations such that the computation of the solutions cannot be reduced to the computation of square and cube roots.

  8. Quartic function - Wikipedia

    en.wikipedia.org/wiki/Quartic_function

    For a general formula that is always true, one thus needs to choose a root of the cubic equation such that m ≠ 0. This is always possible except for the depressed equation y 4 = 0. Now, if m is a root of the cubic equation such that m ≠ 0, equation becomes

  9. Equation of state - Wikipedia

    en.wikipedia.org/wiki/Equation_of_state

    Hence, all cubic equations of state can be considered 'modified van der Waals equation of state'. There is a very large number of such cubic equations of state. For process engineering, cubic equations of state are today still highly relevant, e.g. the Peng Robinson equation of state or the Soave Redlich Kwong equation of state.