Search results
Results from the WOW.Com Content Network
Load affects the performance of circuits with respect to output voltages or currents, such as in sensors, voltage sources, and amplifiers. Mains power outlets provide an easy example: they supply power at constant voltage, with electrical appliances connected to the power circuit collectively making up the load.
The volt-ampere (SI symbol: VA, [1] sometimes V⋅A or V A) is the unit of measurement for apparent power in an electrical circuit.It is the product of the root mean square voltage (in volts) and the root mean square current (in amperes). [2]
In the International System of Units (SI), electric current is expressed in units of ampere (sometimes called an "amp", symbol A), which is equivalent to one coulomb per second. The ampere is an SI base unit and electric current is a base quantity in the International System of Quantities (ISQ).
The ampere is named for French physicist and mathematician André-Marie Ampère (1775–1836), who studied electromagnetism and laid the foundation of electrodynamics.In recognition of Ampère's contributions to the creation of modern electrical science, an international convention, signed at the 1881 International Exposition of Electricity, established the ampere as a standard unit of ...
In a direct current circuit, the power flowing to the load is proportional to the product of the current through the load and the potential drop across the load. The power that happens because of a capacitor or inductor is called reactive power. It happens because of the AC nature of elements like inductors and capacitors.
RLA – Rated-load amps: The maximum current a motor should draw under any operating conditions. Often mistakenly called running-load amps, which leads people to believe, incorrectly, that the motor should always pull these amps. FLA – Full-load amps: Changed in 1976 to "RLA – rated-load amps".
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Ohm's law states that the electric current through a conductor between two points is directly proportional to the voltage across the two points. Introducing the constant of proportionality, the resistance, [1] one arrives at the three mathematical equations used to describe this relationship: [2]