Search results
Results from the WOW.Com Content Network
The partial sums of the series 1 + 2 + 3 + 4 + 5 + 6 + ⋯ are 1, 3, 6, 10, 15, etc.The nth partial sum is given by a simple formula: = = (+). This equation was known ...
The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .
(in which, after five initial +1 terms, the terms alternate in pairs of +1 and −1 terms – the infinitude of both +1s and −1s allows any finite number of 1s or −1s to be prepended, by Hilbert's paradox of the Grand Hotel) is a permutation of Grandi's series in which each value in the rearranged series corresponds to a value that is at ...
This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums. Here, is taken to have the value
In mathematics, the harmonic series is the infinite series formed by summing all positive unit fractions: = = + + + + +.. The first terms of the series sum to approximately +, where is the natural logarithm and is the Euler–Mascheroni constant.
In mathematics, a series is, roughly speaking, an addition of infinitely many terms, one after the other. [1] The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures in combinatorics through generating functions.
The first four partial sums of 1 + 2 + 4 + 8 + ⋯. In mathematics, 1 + 2 + 4 + 8 + ⋯ is the infinite series whose terms are the successive powers of two. As a geometric series, it is characterized by its first term, 1, and its common ratio, 2. As a series of real numbers it diverges to infinity, so the sum of this series is infinity.
One-to-one correspondence between an infinite set and its proper subset. A different form of "infinity" is the ordinal and cardinal infinities of set theory—a system of transfinite numbers first developed by Georg Cantor. In this system, the first transfinite cardinal is aleph-null (ℵ 0), the cardinality of the set of natural numbers.