Search results
Results from the WOW.Com Content Network
Acoustic theory is a scientific field that relates to the description of sound waves.It derives from fluid dynamics.See acoustics for the engineering approach.. For sound waves of any magnitude of a disturbance in velocity, pressure, and density we have
Geometrical acoustics is an approximate theory, valid in the limiting case of very small wavelengths, or very high frequencies. The principal task of geometrical acoustics is to determine the trajectories of sound rays. The rays have the simplest form in a homogeneous medium, where they are straight lines. If the acoustic parameters of the ...
Other acoustic scientists advance understanding of how sound is affected as it moves through environments, e.g. underwater acoustics, architectural acoustics or structural acoustics. Other areas of work are listed under subdisciplines below. Acoustic scientists work in government, university and private industry laboratories.
In physics, the acoustic wave equation is a second-order partial differential equation that governs the propagation of acoustic waves through a material medium resp. a standing wavefield. The equation describes the evolution of acoustic pressure p or particle velocity u as a function of position x and time t. A simplified (scalar) form of the ...
In acoustics, Stokes's law of sound attenuation is a formula for the attenuation of sound in a Newtonian fluid, such as water or air, due to the fluid's viscosity.It states that the amplitude of a plane wave decreases exponentially with distance traveled, at a rate α given by = where η is the dynamic viscosity coefficient of the fluid, ω is the sound's angular frequency, ρ is the fluid ...
The ratio between two acoustic pressures in deciBels is expressed by the equation dB = 20log(p1/p2), so for every doubling of distance from the point source p1 = 1 and p2 = 2, thus there is a sound pressure decrease of approximately 6 dB. A line source is a hypothetical one-dimensional source of a sound, as opposed to a dimensionless point ...
The source–filter model represents speech as a combination of a sound source, such as the vocal cords, and a linear acoustic filter, the vocal tract.While only an approximation, the model is widely used in a number of applications such as speech synthesis and speech analysis because of its relative simplicity.
Approximations are introduced to make the source terms independent of the acoustic variables. In this way, linearized equations are derived which describe the propagation of the acoustic waves in a homogeneous, resting medium. The latter is excited by the acoustic source terms, which are determined from the turbulent fluctuations.