enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Square number - Wikipedia

    en.wikipedia.org/wiki/Square_number

    if the last digit of a number is 4 or 6, its square ends in an odd digit followed by a 6; and; if the last digit of a number is 5, its square ends in 25. In base 12, a square number can end only with square digits (like in base 12, a prime number can end only with prime digits or 1), that is, 0, 1, 4 or 9, as follows:

  3. Highly composite number - Wikipedia

    en.wikipedia.org/wiki/Highly_composite_number

    the k given prime numbers p i must be precisely the first k prime numbers (2, 3, 5, ...); if not, we could replace one of the given primes by a smaller prime, and thus obtain a smaller number than n with the same number of divisors (for instance 10 = 2 × 5 may be replaced with 6 = 2 × 3; both have four divisors);

  4. Square (algebra) - Wikipedia

    en.wikipedia.org/wiki/Square_(algebra)

    The square of an integer may also be called a square number or a perfect square. In algebra, the operation of squaring is often generalized to polynomials, other expressions, or values in systems of mathematical values other than the numbers. For instance, the square of the linear polynomial x + 1 is the quadratic polynomial (x + 1) 2 = x 2 ...

  5. Subtract a square - Wikipedia

    en.wikipedia.org/wiki/Subtract_a_square

    This holds in particular for cold numbers ending in 6. Out of all the over 180,000 cold numbers less than 40 million, only one ends in a 6: 11,356. [5] No two cold numbers can differ by a square, because if they did then a move from the larger of the two to the smaller would be winning, contradicting the assumption that they are both cold.

  6. Difference of two squares - Wikipedia

    en.wikipedia.org/wiki/Difference_of_two_squares

    If two numbers (whose average is a number which is easily squared) are multiplied, the difference of two squares can be used to give you the product of the original two numbers. For example: 27 × 33 = ( 30 − 3 ) ( 30 + 3 ) {\displaystyle 27\times 33=(30-3)(30+3)}

  7. Powerful number - Wikipedia

    en.wikipedia.org/wiki/Powerful_number

    2 = 3 3 − 5 2 10 = 13 3 − 3 7 18 = 19 2 − 7 3 = 3 5 − 15 2. It had been conjectured that 6 cannot be so represented, and Golomb conjectured that there are infinitely many integers which cannot be represented as a difference between two powerful numbers. However, Narkiewicz showed that 6 can be so represented in infinitely many ways such as

  8. Sum of two squares theorem - Wikipedia

    en.wikipedia.org/wiki/Sum_of_two_squares_theorem

    Of the primes occurring in this decomposition, 2, 5, and 7, only 7 is congruent to 3 modulo 4. Its exponent in the decomposition, 2, is even. Therefore, the theorem states that it is expressible as the sum of two squares. Indeed, 2450 = 7 2 + 49 2. The prime decomposition of the number 3430 is 2 · 5 · 7 3. This time, the exponent of 7 in the ...

  9. Mental calculation - Wikipedia

    en.wikipedia.org/wiki/Mental_calculation

    This method requires memorization of the squares of the one-digit numbers 1 to 9. The square of mn, mn being a two-digit integer, can be calculated as 10 × m(mn + n) + n 2. Meaning the square of mn can be found by adding n to mn, multiplied by m, adding 0 to the end and finally adding the square of n. For example, 23 2: 23 2 = 10 × 2(23 + 3 ...