Search results
Results from the WOW.Com Content Network
Coot displays electron density maps and atomic models and allows model manipulations such as idealization, real space refinement, manual rotation/translation, rigid-body fitting, ligand search, solvation, mutations, rotamers, and Ramachandran idealization. The software is designed to be easy-to-learn for novice users, achieved by ensuring that ...
In atomic physics, the Bohr model or Rutherford–Bohr model was the first successful model of the atom. Developed from 1911 to 1918 by Niels Bohr and building on Ernest Rutherford 's nuclear model , it supplanted the plum pudding model of J J Thomson only to be replaced by the quantum atomic model in the 1920s.
The B Reactor at the Hanford Site, near Richland, Washington, was the first large-scale nuclear reactor ever built. The project was a key part of the Manhattan Project, the United States nuclear weapons development program during World War II.
Most of the phases are based on B 12 icosahedra, but the γ phase can be described as a rocksalt-type arrangement of the icosahedra and B 2 atomic pairs. [31] It can be produced by compressing other boron phases to 12–20 GPa and heating to 1500–1800 °C; it remains stable after releasing the temperature and pressure.
The construction of physical models is often a creative act, and many bespoke examples have been carefully created in the workshops of science departments. There is a very wide range of approaches to physical modeling, including ball-and-stick models available for purchase commercially, to molecular models created using 3D printers. The main ...
As anticipated by its hydride clusters, boron forms a variety of stable compounds with formal oxidation state less than three. B 2 F 4 and B 4 Cl 4 are well characterized. [6] Ball-and-stick model of superconductor magnesium diboride. Boron atoms lie in hexagonal aromatic graphite-like layers, with a charge of −1 on each boron atom.
The Bohr–Sommerfeld model (also known as the Sommerfeld model or Bohr–Sommerfeld theory) was an extension of the Bohr model to allow elliptical orbits of electrons around an atomic nucleus. Bohr–Sommerfeld theory is named after Danish physicist Niels Bohr and German physicist Arnold Sommerfeld .
Borophene is a crystalline atomic monolayer of boron, i.e., it is a two-dimensional allotrope of boron and also known as boron sheet. First predicted by theory in the mid-1990s, [ 1 ] different borophene structures were experimentally confirmed in 2015.