Search results
Results from the WOW.Com Content Network
An oblique combination of the sinusoidal and Mollweide projections. 1906 Eckert II: Pseudocylindrical Equal-area Max Eckert-Greifendorff: 1906 Eckert IV: Pseudocylindrical Equal-area Max Eckert-Greifendorff: Parallels are unequal in spacing and scale; outer meridians are semicircles; other meridians are semiellipses. 1906 Eckert VI ...
Newcomb gives the Right ascension of the fictitious mean Sun, affected by aberration (which is used in finding mean solar time) as [10] τ = 18 h 38 m 45.836 s + 8 640 184.542 s T + 0.0929 s T 2. Authors citing this expression include McCarthy & Seidelmann (p. 13) and the Nautical Almanac Offices of the United Kingdom and United States (p. 73).
The equation of time is obtained by substituting the result of the right ascension calculation into an equation of time formula. Here Δ t ( M ) = M + λ p − α [ λ ( M )] is used; in part because small corrections (of the order of 1 second), that would justify using E , are not included, and in part because the goal is to obtain a simple ...
Right ascension and declination as seen on the inside of the celestial sphere. The primary direction of the system is the March equinox, the ascending node of the ecliptic (red) on the celestial equator (blue). Right ascension is measured eastward up to 24 h along the celestial equator from the primary direction.
(The above formula is related to a reasonably simple and accurate calculation of the Equation of Time, which is described here.) More complicated algorithms [16] [17] correct for changes to the ecliptic longitude by using terms in addition to the 1st-order eccentricity correction above. They also correct the 23.44° obliquity which changes very ...
The change μ α, which must be multiplied by cosδ to become a component of the proper motion, is sometimes called the "proper motion in right ascension", and μ δ the "proper motion in declination". [11] If the proper motion in right ascension has been converted by cosδ, the result is designated μ α*.
Orthographic projection (also orthogonal projection and analemma) [a] is a means of representing three-dimensional objects in two dimensions.Orthographic projection is a form of parallel projection in which all the projection lines are orthogonal to the projection plane, [2] resulting in every plane of the scene appearing in affine transformation on the viewing surface.
The longitude of the ascending node, also known as the right ascension of the ascending node, is one of the orbital elements used to specify the orbit of an object in space. Denoted with the symbol Ω , it is the angle from a specified reference direction, called the origin of longitude , to the direction of the ascending node (☊), as ...