Search results
Results from the WOW.Com Content Network
In statistics, the Tukey–Duckworth test is a two-sample location test – a statistical test of whether one of two samples was significantly greater than the other. It was introduced by John Tukey, who aimed to answer a request by W. E. Duckworth for a test simple enough to be remembered and applied in the field without recourse to tables, let alone computers.
Tukey's range test, also known as Tukey's test, Tukey method, Tukey's honest significance test, or Tukey's HSD (honestly significant difference) test, [1] is a single ...
John Wilder Tukey (/ ˈ t uː k i /; June 16, 1915 – July 26, 2000) was an American mathematician and statistician, best known for the development of the fast Fourier Transform (FFT) algorithm and box plot. [2] The Tukey range test, the Tukey lambda distribution, the Tukey test of additivity, and the Teichmüller–Tukey lemma all bear his
In statistical hypothesis testing, a two-sample test is a test performed on the data of two random samples, each independently obtained from a different given population. The purpose of the test is to determine whether the difference between these two populations is statistically significant .
Test name Scaling Assumptions Data Samples Exact Special case of Application conditions One sample t-test: interval: normal: univariate: 1: No [8]: Location test: Unpaired t-test: interval
Exact test; Location test; Paired difference test; Separation test; Structural break test; A. ... Tukey–Duckworth test; Tukey's range test; Tukey's test of additivity;
Tukey–Duckworth test: tests equality of two distributions by using ranks. Wald–Wolfowitz runs test: tests whether the elements of a sequence are mutually independent/random. Wilcoxon signed-rank test: tests whether matched pair samples are drawn from populations with different mean ranks.
Tukey's test is either: Tukey's range test, also called Tukey method, Tukey's honest significance test, Tukey's HSD (Honestly Significant Difference) test;