Search results
Results from the WOW.Com Content Network
The log-likelihood function being plotted is used in the computation of the score (the gradient of the log-likelihood) and Fisher information (the curvature of the log-likelihood). Thus, the graph has a direct interpretation in the context of maximum likelihood estimation and likelihood-ratio tests.
The use of log probabilities improves numerical stability, when the probabilities are very small, because of the way in which computers approximate real numbers. [1] Simplicity. Many probability distributions have an exponential form. Taking the log of these distributions eliminates the exponential function, unwrapping the exponent.
For logistic regression, the measure of goodness-of-fit is the likelihood function L, or its logarithm, the log-likelihood ℓ. The likelihood function L is analogous to the ε 2 {\displaystyle \varepsilon ^{2}} in the linear regression case, except that the likelihood is maximized rather than minimized.
The likelihood ratio is a function of the data ; therefore, it is a statistic, although unusual in that the statistic's value depends on a parameter, . The likelihood-ratio test rejects the null hypothesis if the value of this statistic is too small.
In statistics, the score (or informant [1]) is the gradient of the log-likelihood function with respect to the parameter vector. Evaluated at a particular value of the parameter vector, the score indicates the steepness of the log-likelihood function and thereby the sensitivity to infinitesimal changes to the parameter
The identification condition is absolutely necessary for the ML estimator to be consistent. When this condition holds, the limiting likelihood function ℓ(θ|·) has unique global maximum at θ 0. Compactness: the parameter space Θ of the model is compact. The identification condition establishes that the log-likelihood has a unique global ...
Thus, the Fisher information may be seen as the curvature of the support curve (the graph of the log-likelihood). Near the maximum likelihood estimate, low Fisher information therefore indicates that the maximum appears "blunt", that is, the maximum is shallow and there are many nearby values with a similar log-likelihood. Conversely, high ...
For example, the log-normal function with such fits well with the size of secondarily produced droplets during droplet impact [49] and the spreading of an epidemic disease. [ 50 ] The value σ = 1 / 6 {\textstyle \sigma =1{\big /}{\sqrt {6}}} is used to provide a probabilistic solution for the Drake equation.