Search results
Results from the WOW.Com Content Network
Greatest common divisors can be computed by determining the prime factorizations of the two numbers and comparing factors. For example, to compute gcd(48, 180), we find the prime factorizations 48 = 2 4 · 3 1 and 180 = 2 2 · 3 2 · 5 1; the GCD is then 2 min(4,2) · 3 min(1,2) · 5 min(0,1) = 2 2 · 3 1 · 5 0 = 12 The corresponding LCM is ...
where the product is over all primes p, and γ c,p (n) is the number of solutions to the equation n = q 1 + ⋯ + q c mod p in modular arithmetic, subject to the constraints q 1, …, q c ≠ 0 mod p. This formula has been rigorously proven to be asymptotically valid for c ≥ 3 from the work of Ivan Matveevich Vinogradov, but is still only a ...
The Euclidean algorithm is based on the principle that the greatest common divisor of two numbers does not change if the larger number is replaced by its difference with the smaller number. For example, 21 is the GCD of 252 and 105 (as 252 = 21 × 12 and 105 = 21 × 5), and the same number 21 is also the GCD of 105 and 252 − 105 = 147. Since ...
For example, if the polynomial used to define the finite field GF(2 8) is p = x 8 + x 4 + x 3 + x + 1, and a = x 6 + x 4 + x + 1 is the element whose inverse is desired, then performing the algorithm results in the computation described in the following table.
Flowchart of using successive subtractions to find the greatest common divisor of number r and s. In mathematics and computer science, an algorithm (/ ˈ æ l ɡ ə r ɪ ð əm / ⓘ) is a finite sequence of mathematically rigorous instructions, typically used to solve a class of specific problems or to perform a computation. [1]
The greatest common divisor of two Gaussian integers is not unique, but is defined up to the multiplication by a unit. That is, given a greatest common divisor d of a and b, the greatest common divisors of a and b are d, –d, id, and –id. There are several ways for computing a greatest common divisor of two Gaussian integers a and b.
You can find instant answers on our AOL Mail help page. Should you need additional assistance we have experts available around the clock at 800-730-2563.
The concept of pairwise coprimality is important as a hypothesis in many results in number theory, such as the Chinese remainder theorem. It is possible for an infinite set of integers to be pairwise coprime. Notable examples include the set of all prime numbers, the set of elements in Sylvester's sequence, and the set of all Fermat numbers.